系统生物学的英文名字是systems biology,不是system biology

上一篇 / 下一篇  2011-05-27 11:53:28

文章来源
  • 文章来源:转载

  一些时候人们会把systems biology误写为system biology。systems,是带s的。再次特别提示注意。

  ---------------

  Systems biology

  From Wikipedia, the free encyclopedia

  Systems biology is a term used to describe a number of trends in bioscience research, and a movement which draws on those trends. Proponents describe systems biology as a biology-based inter-disciplinary study field that focuses on complex interactions in biological systems, claiming that it uses a new perspective (holism instead of reduction). Particularly from year 2000 onwards, the term is used widely in the biosciences, and in a variety of contexts. An often stated ambition of systems biology is the modeling and discovery of emergent properties, properties of a system whose theoretical description is only possible using techniques which fall under the remit of systems biology.

  Contents

  1 Overview

  2 History

  3 Techniques associated with systems biology

  4 See also

  5 References

  6 Further reading

  6.1 Books

  6.2 Journals

  6.3 Articles

  7 External links

  Overview

  Systems biology can be considered from a number of different aspects:

  As a field of study, particularly, the study of the interactions between the components of biological systems, and how these interactions give rise to the function and behavior. of that system (for example, the enzymes and metabolites in a metabolic pathway).[1][2]

  As a paradigm, usually defined in antithesis to the so-called reductionist paradigm (biological organisation), although fully consistent with the scientific method. The distinction between the two paradigms is referred to in these quotations:

  "The reductionist approach has successfully identified most of the components and many of the interactions but, unfortunately, offers no convincing concepts or methods to understand how system properties emerge...the pluralism of causes and effects in biological networks is better addressed by observing, through quantitative measures, multiple components simultaneously and by rigorous data integration with mathematical models" Science[3]

  "Systems biology...is about putting together rather than taking apart, integration rather than reduction. It requires that we develop ways of thinking about integration that are as rigorous as our reductionist programmes, but different....It means changing our philosophy, in the full sense of the term" Denis Noble[4]

  As a series operational protocols used for performing research, namely a cycle composed of theory, analytic or computational modelling to propose specific testable hypotheses about a biological system, experimental validation, and then using the newly acquired quantitative description of cells or cell processes to refine the computational model or theory.[5][6] Since the objective is a model of the interactions in a system, the experimental techniques that most suit systems biology are those that are system-wide and attempt to be as complete as possible. Therefore, transcriptomics, metabolomics, proteomics and high-throughput techniques are used to collect quantitative data for the construction and validation of models.

  As the application of dynamical systems theory to molecular biology.

  As a socioscientific phenomenon defined by the strategy of pursuing integration of complex data about the interactions in biological systems from diverse experimental sources using interdisciplinary tools and personnel.

  This variety of viewpoints is illustrative of the fact that systems biology refers to a cluster of peripherally overlapping concepts rather than a single well-delineated field. However the term has widespread currency and popularity as of 2007, with chairs and institutes of systems biology proliferating worldwide (Such as the Institute for Systems Biology).

  History

  Systems biology finds its roots in:[citation needed]

  the quantitative modeling of enzyme kinetics, a discipline that flourished between 1900 and 1970,

  the mathematical modeling of population growth,

  the simulations developed to study neurophysiology, and

  control theory and cybernetics.

  One of the theorists who can be seen as a precursor of systems biology is Ludwig von Bertalanffy with his general systems theory, "organism biology" (he defined "organism" as the concept of "system") and his book titled "General Systems Theory in Physics and Biology" was published in 1950. One of the first numerical simulations in biology was published in 1952 by the British neurophysiologists and Nobel prize winners Alan Lloyd Hodgkin and Andrew Fielding Huxley, who constructed a mathematical model that explained the action potential propagating along the axon of a neuronal cell.[7] Their model described a cellular function emerging from the interaction between two different molecular components, a potassium and a sodium channels, and can therefore be seen as the beginning of computational systems biology.[8] In 1960, Denis Noble developed the first computer model of the heart pacemaker.[9]

  The formal study of systems biology, as a distinct discipline, was launched by systems theorist Mihajlo Mesarovic in 1966 with an international symposium at the Case Institute of Technology in Cleveland, Ohio entitled "Systems Theory and Biology."[10][11]

  The 1960s and 1970s saw the development of several approaches to study complex molecular systems, such as the Metabolic Control Analysis and the biochemical systems theory. The successes of molecular biology throughout the 1980s, coupled with a skepticism toward theoretical biology, that then promised more than it achieved, caused the quantitative modelling of biological processes to become a somewhat minor field.[citation needed]

  However the birth of functional genomics in the 1990s meant that large quantities of high quality data became available, while the computing power exploded, making more realistic models possible. In 1997, the group of Masaru Tomita published the first quantitative model of the metabolism of a whole (hypothetical) cell. The term of "systems biology" can be found in the article of Zieglgansberger W. and Tolle TR, 1993 (Pub-Med, NIH). During the 1990s years, Zeng B.J. created the concept, model and terms of "system medicine" (April, 1992), "system bio-engineering" (June, 1994) and "systems genetics"(Nov. 1994)" in China, and established the Associates for Biosystem Science and Engineering in 1999, Germany.

  Around the year 2000, when Institutes of Systems Biology were established in Seattle and Tokyo, systems biology emerged as a movement in its own right, spurred on by the completion of various genome projects, the large increase in data from the omics (e.g. genomics and proteomics) and the accompanying advances in high-throughput experiments and bioinformatics. Since then, various research institutes dedicated to systems biology have been developed. As of summer 2006, due to a shortage of people in systems biology[12] several doctoral training centres in systems biology have been established in many parts of the world.

  Techniques associated with systems biology

  According to the interpretation of System Biology as the ability to obtain, integrate and analyze complex data from multiple experimental sources using interdisciplinary tools, some typical technology platforms are:

  Genomics: Organismal deoxyribonucleic acid(DNA) sequence, including intra-organisamal cell specific variation. (i.e. Telomere length variation etc).

  Epigenomics / Epigenetics: Organismal and corresponding cell specific transcriptomic regulating factors not empirically coded in the genomic sequence. (i.e. DNA methylation, Histone Acetelation etc).

  Transcriptomics: Organismal, tissue or whole cell gene expression measurements by DNA microarrays or serial analysis of gene expression

  Interferomics: Organismal, tissue, or cell level transcript. correcting factors (i.e. RNA interference)

  Translatomics / Proteomics: Organismal, tissue, or cell level measurements of proteins and peptides via two-dimensional gel electrophoresis, mass spectrometry or multi-dimensional protein identification techniques (advanced HPLC systems coupled with mass spectrometry). Sub disciplines include phosphoproteomics, glycoproteomics and other methods to detect chemically modified proteins.

  Metabolomics: Organismal, tissue, or cell level measurements of all small-molecules known as metabolites.

  Glycomics: Organismal, tissue, or cell level measurements of carbohydrates.

  Lipidomics: Organismal, tissue, or cell level measurements of lipids.

  In addition to the identification and quantification of the above given molecules further techniques analyze the dynamics and interactions within a cell. This includes:[citation needed]

  Interactomics: Organismal, tissue, or cell level study of interactions between molecules. Currently the authoratative molecular discipline in this field of study is protein-protein interactions (PPI), although the working definition does not pre-clude inclusion of other molecular disciplines such as those defined here.

  Fluxomics: Organismal, tissue, or cell level measurements of molecular dynamic changes over time.

  Biomics: systems analysis of the biome.

  The investigations are frequently combined with large scale perturbation methods, including gene-based (RNAi, mis-expression of wild type and mutant genes) and chemical approaches using small molecule libraries.[citation needed] Robots and automated sensors enable such large-scale experimentation and data acquisition. These technologies are still emerging and many face problems that the larger the quantity of data produced, the lower the quality.[citation needed] A wide variety of quantitative scientists (computational biologists, statisticians, mathematicians, computer scientists, engineers, and physicists) are working to improve the quality of these approaches and to create, refine, and retest the models to accurately reflect observations.

  The systems biology approach often involves the development of mechanistic models, such as the reconstruction of dynamic systems from the quantitative properties of their elementary building blocks.[13][14] For instance, a cellular network can be modelled mathematically using methods coming from chemical kinetics and control theory. Due to the large number of parameters, variables and constraints in cellular networks, numerical and computational techniques are often used. Other aspects of computer science and informatics are also used in systems biology. These include new forms of computational model, such as the use of process calculi to model biological processes, the integration of information from the literature, using techniques of information extraction and text mining, the development of online databases and repositories for sharing data and models (such as BioModels Database), approaches to database integration and software interoperability via loose coupling of software, websites and databases such as Gaggle, SBW, or commercial suits, and the development of syntactically and semantically sound ways of representing biological models, such as the Systems Biology Markup Language (SBML).

  See also

  Related fields

  Complex systems

  Complex systems biology

  Bioinformatics

  Biological network inference

  Biological systems engineering

  Biomedical cybernetics

  Biostatistics

  Extrapolation based molecular systems biology

  Theoretical Biophysics

  Relational Biology

  Translational Research

  Computational biology

  Computational systems biology

  Scotobiology

  Synthetic biology

  Systems biology modeling

  Systems ecology

  Systems immunology

  Related terms

  Life

  Biological organisation

  Artificial life

  Gene regulatory network

  Metabolic network modelling

  Living systems theory

  Network Theory of Aging

  Regulome

  Systems Biology Markup Language (SBML)

  SBO

  Viable System Model

  Antireductionism

  Systems biologists

  Category:Systems biologists

  Lists

  Category:Systems biologists

  List of systems biology conferences

  List of omics topics in biology

  List of publications in systems biology

  List of systems biology research groups

  References

  ^ Snoep J.L. and Westerhoff H.V.; Alberghina L. and Westerhoff H.V. (Eds.) (2005.). "From isolation to integration, a systems biology approach for building the Silicon Cell". Systems Biology: Definitions and Perspectives. Springer-Verlag. p. 7.

  ^ "Systems Biology - the 21st Century Science". http://www.systemsbiology.org/Intro_to_ISB_and_Systems_Biology/Systems_Biology_--_the_21st_Century_Science.

  ^ Sauer, U. et al. (27 April 2007). [Expression error: Missing operand for > "Getting Closer to the Whole Picture"]. Science 316: 550. doi:10.1126/science.1142502. PMID 17463274.

  ^ Denis Noble (2006). The Music of Life: Biology beyond the genome. Oxford University Press. ISBN 978-0199295739. p21

  ^ "Systems Biology: Modelling, Simulation and Experimental Validation". http://www.bbsrc.ac.uk/science/areas/ebs/themes/main_sysbio.html.

  ^ Kholodenko B.N., Bruggeman F.J., Sauro H.M.; Alberghina L. and Westerhoff H.V.(Eds.) (2005.). "Mechanistic and modular approaches to modeling and inference of cellular regulatory networks". Systems Biology: Definitions and Perspectives. Springer-Verlag. p. 143.

  ^ Hodgkin AL, Huxley AF (1952). [Expression error: Missing operand for > "A quantitative description of membrane current and its application to conduction and excitation in nerve"]. J Physiol 117 (4): 500–544. PMID 12991237.

  ^ Le Novère, N (2007). [Expression error: Missing operand for > "The long journey to a Systems Biology of neuronal function"]. BMC Systems Biology 1: 28. doi:10.1186/1752-0509-1-28. PMID 17567903.

  ^ Noble D (1960). [Expression error: Missing operand for > "Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations"]. Nature 188: 495–497. doi:10.1038/188495b0. PMID 13729365.

  ^ Mesarovic, M. D. (1968). Systems Theory and Biology. Springer-Verlag.

  ^ "A Means Toward a New Holism". Science 161 (3836): 34–35. doi:10.1126/science.161.3836.34. http://www.jstor.org/view/00368075/ap004022/00a00220/0.

  ^ "Working the Systems". http://sciencecareers.sciencemag.org/career_development/previous_issues/articles/2006_03_03/working_the_systems/(parent)/158.

  ^ Gardner, TS; di Bernardo D, Lorenz D and Collins JJ (4 July 2003). [Expression error: Missing operand for > "Inferring genetic networks and identifying compound of action via expression profiling"]. Science 301: 102–1005. doi:10.1126/science.1081900. PMID 12843395.

  ^ di Bernardo, D; Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliot SJ, Schaus SE and Collins JJ (March 2005). [Expression error: Missing operand for > "Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks"]. Nature Biotechnology 23: 377–383. doi:10.1038/nbt1075. PMID 15765094.

  Further reading

  Books

  Zeng BJ. Structurity - Pan-evolution theory of biosystems, Hunan Changsha Xinghai, May, 1994.

  Hiroaki Kitano (editor). Foundations of Systems Biology. MIT Press: 2001. ISBN 0-262-11266-3

  CP Fall, E Marland, J Wagner and JJ Tyson (Editors). "Computational Cell Biology." Springer Verlag: 2002 ISBN 0-387-95369-8

  G Bock and JA Goode (eds).In Silico" Simulation of Biological Processes, Novartis Foundation Symposium 247. John Wiley & Sons: 2002. ISBN 0-470-84480-9

  E Klipp, R Herwig, A Kowald, C Wierling, and H Lehrach. Systems Biology in Practice. Wiley-VCH: 2005. ISBN 3-527-31078-9

  L. Alberghina and H. Westerhoff (Editors) – Systems Biology: Definitions and Perspectives, Topics in Current Genetics 13, Springer Verlag (2005), ISBN 978-3540229681

  A Kriete, R Eils. Computational Systems Biology., Elsevier - Academic Press: 2005. ISBN 0-12-088786-X

  K. Sneppen and G. Zocchi, (2005) Physics in Molecular Biology, Cambridge University Press, ISBN 0-521-84419-3

  D. Noble, The Music of life. Biology beyond the genome Oxford University Press 2006. ISBN 0199295735, ISBN 978-0199295739

  Z. Szallasi, J. Stelling, and V.Periwal (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts (Hardcover), MIT Press: 2006, ISBN 0-262-19548-8

  B Palsson, Systems Biology - Properties of Reconstructed Networks. Cambridge University Press: 2006. ISBN 978-0-521-85903-5

  K Kaneko. Life: An Introduction to Complex Systems Biology. Springer: 2006. ISBN 3540326669

  U Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press: 2006. ISBN 1-58488-642-0 - emphasis on Network Biology (For a comparative review of Alon, Kaneko and Palsson see Werner, E. (March 29, 2007). "All systems go" (PDF). Nature 446: 493–494. doi:10.1038/446493a. http://www.nature.com/nature/journal/v446/n7135/pdf/446493a.pdf.)

  Andriani Daskalaki (editor) "Handbook of Research on Systems Biology Applications in Medicine" Medical Information Science Reference, October 2008 ISBN 978-1-60566-076-9

  Journals

  BMC Systems Biology - open access journal on systems biology

  Molecular Systems Biology - open access journal on systems biology

  IET Systems Biology - not open access journal on systems biology

  WIRES Systems Biology and Medicine - open access journal on systems biology and medicine

  Articles

  Zeng BJ., On the concept of system biological engineering, Communication on Transgenic Animals, CAS, June, 1994.

  Zeng BJ., Transgenic expression system - goldegg plan (termed system genetics as the third wave of genetics), Communication on Transgenic Animals, CAS, Nov. 1994.

  Zeng BJ., From positive to synthetic medical science, Communication on Transgenic Animals, CAS, Nov. 1995.

  Binnewies, Tim Terence, Miller, WG, Wang, G. The complete genome sequence and analysis of the human pathogen Campylobacter lari. Published in journal: Foodborne Pathog Disease (ISSN 1535-3141) , vol: 5, issue: 4, pages: 371-386, 2008, Mary Ann Liebert, Inc. Publishers.

  M. Tomita, Hashimoto K, Takahashi K, Shimizu T, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA. E-CELL: Software Environment for Whole Cell Simulation. Genome Inform. Ser Workshop Genome Inform. 1997;8:147-155. [1]

  ScienceMag.org - Special Issue: Systems Biology, Science, Vol 295, No 5560, March 1, 2002

  Marc Vidal and Eileen E. M. Furlong. Nature Reviews Genetics 2004 From OMICS to systems biology

  Marc Facciotti, Richard Bonneau, Leroy Hood and Nitin Baliga. Current Genomics 2004 Systems Biology Experimental Design - Considerations for Building Predictive Gene Regulatory Network Models for Prokaryotic Systems

  Katia Basso, Adam A Margolin, Gustavo Stolovitzky, Ulf Klein, Riccardo Dalla-Favera, Andrea Califano, (2005) "Reverse engineering of regulatory networks in human B cells". Nat Genet;37(4):382-90

  Mario Jardon Systems Biology: An Overview - a review from the Science Creative Quarterly, 2005

  Johnjoe McFadden, Guardian.co.uk - 'The unselfish gene: The new biology is reasserting the primacy of the whole organism - the individual - over the behaviour of isolated genes', The Guardian (May 6, 2005)

  Pharoah, M.C. (online). Looking to systems theory for a reductive explanation of phenomenal experience and evolutionary foundations for higher order thought Retrieved Jan, 15 2008.

  WTEC Panel Report on International Research and Development in Systems Biology (2005)

  E. Werner, "The Future and Limits of Systems Biology", Science STKE 2005, pe16 (2005).

  Francis J. Doyle and J?rg Stelling, "Systems interface biology" J. R. Soc. Interface Vol 3, No 10 2006

  Kahlem, P. and Birney E. (2006). "Dry work in a wet world: computation in systems biology." Mol Syst Biol 2: 40.

  E. Werner, "All systems go", "Nature" vol 446, pp 493–494, March 29, 2007. (Review of three books (Alon, Kaneko, and Palsson) on systems biology.)

  Santiago Schnell, Ramon Grima, Philip K. Maini, "Multiscale Modeling in Biology", American Scientist, Vol 95, pages 134-142, March-April 2007.

  TS Gardner, D di Bernardo, D Lorenz and JJ Collins. "Inferring genetic networks and identifying compound of action via expression profiling." Science 301: 102-105 (2003).

  Jeffery C. Way and Pamela A. Silver, Why We Need Systems Biology

  H.S. Wiley, "Systems Biology - Beyond the Buzz." The Scientist. June 2006.

  Nina Flanagan, "Systems Biology Alters Drug Development." Genetic Engineering & Biotechnology News, January 2008


TAG: 系统生物学

 

评分:0

我来说两句

显示全部

:loveliness: :handshake :victory: :funk: :time: :kiss: :call: :hug: :lol :'( :Q :L ;P :$ :P :o :@ :D :( :)

日历

« 2016-12-11  
    123
45678910
11121314151617
18192021222324
25262728293031

数据统计

  • 访问量: 1910
  • 日志数: 18
  • 建立时间: 2010-09-19
  • 更新时间: 2012-06-03

RSS订阅

Open Toolbar