
Toward Diagnosis of Diabetes by NMR and Multivariate Analysis

and MineIt™ applications. The macro included correction of
DC offset, zero-filling to 16,192 points, Lorentizan apodization
of 0.2 Hz, Fourier Transform, phase correction, baseline
correction with automatic base point detection and Spline
fitting, and referencing (with the same data point at the DSS
peak set to 0 ppm). After the batch processing, some of the
imperfectly phased spectra were re-phased and baseline
corrected again manually and saved back to the database.
Status information (normal or diabetic) was added manually for
each sample into the database.

The principal component analysis (PCA) was run with the
AnalyzeIt™ MVP application. The spectral regions of 10-5.15
ppm and 4.75 - 0.5 ppm were used for the computation in
order to exclude the strong water peaks and other baseline
regions. Prior to PCA, each spectrum was transformed by
subtracting by its baseline value (the value of the first point in
the region of 10-5.15 ppm) and dividing by sample 2-norm
(i.e., vector length normalization). Mean-centering was used in
pre-processing.

While we mainly used the spectral datapoints as input to PCA
analysis, we also compared the results using a conventional
way of binning/bucketing (either with a fixed width of 0.04 ppm
per bin or using the IntelliBucketTM method where the bin width
is automatically adjusted based on the Overlap Density
Heatmap (ODH) consensus spectrum). The integral of the bins
were used as their Y-values, and they are subtracted by the
integral of the first bin (the one closest to 10 ppm) to correct
the baseline; next, the bins were scaled by dividing by sample
2-norm. Mean-centering was used in pre-processing.

The post-PCA analysis was done using the SearchItTM and
ProcessItTM NMR applications. A 1H and 13C NMR spectral
library of over 225 standard metabolites [3] were searched to
identify changed metabolites using queries such as a loading
plot and a difference spectrum between the OD consensus
spectra of the individual classes.
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Abstract

Nuclear magnetic resonance spectroscopy (NMR) is becoming
a key tool for understanding the metabolic processes in living
systems. Among its many applications, advanced
spectroscopic techniques are combined with multivariate
statistical approaches to provide diagnostic information for
diseases and to identify the changes in the metabolic pathways
[1,2]. This study demonstrates the potentials of this approach
by the multivariate analysis of the 1H NMR spectra of serum
samples from diabetic and healthy people.

Method

Thirty-seven blood samples were collected from seventeen
diabetic patients and twenty healthy people; then they were
allowed to clot in plastic tubes for about two hours at room
temperature. Aliquots of serum were collected from the blood
and stored at -80°C until assayed.

Before the NMR experiment, each sample (150µl) was diluted
with solvent solution (300µl H2O, 50ul D2O and 3µl DSS). All
spectra were measured at a temperature of 298K on a
BRUKER Avance-500 spectrometer operating at the proton
frequency of 500.13 MHz using pulse sequence ZGPR (RD-90-
t1-90- acquisition, RD being a relaxation delay of 1.5s during
which the water resonance is selectively irradiated). For each
sample, 64 scans were collected into 8K complex data points
with a spectral width of 8012.8Hz.

The whole data analysis process, from NMR spectral
processing to principal component analysis to metabolite
database search, were all done using several of the integrated
application modules in the KnowItAll® Informatics System
(Metabolomics Edition).

The raw spectra (FIDs) were automatically processed and saved
into a database using the macro-based batch processing
function of the KnowItAll® Informatics System ProcessIt™ NMR



Subsequent PCA analysis was focused on the regions of 10 -
5.15 ppm and 4.75 - 0.5 ppm. First, we used all 37 samples.
The PCA scores (PC1 vs. PC2) are shown in Figure 2 where
clear distinctions between the diabetic and normal samples
are evident.

From this plot it is evident that the samples 8 and 37 are
outliers. After removing both of these samples from the PCA,
we generated the following scores plot (Figure 3).

Other than the conventional loading plots, the Overlap Density
Heatmap display functions of the KnowItAll® Informatics
System provide novel approaches to evaluate spectral
differences and, conversely, similarities. Figure 6 shows the
ODHs of all spectra in both groups (Above: normal; below:
diabetic). Compared to conventional overlay displays of multiple
spectra, the OD heatmap allows one to quickly identify the
highly common areas (in red) and less common areas (in violet)
within each group of spectra being examined, and hence
provide a better technique to analyze multiple spectra at once.

The loadings plots of PC1 (Figure 4) provides insight to the
main spectral differences that lead to the differentiation of the
two groups. Note that such a loadings plot has a point-to-point
correspondence to the actual spectral data points, and hence
is convenient to compare with the original spectra directly. (See
further discussion regarding Figure 6.) Furthermore, it is used
as a query spectrum and the peaks are searched against a
library of over 225 common metabolites. The top hit, with
peaks around 4-3.4 ppm matched, was D-glucose (Figure 5).

Figure 1. Overlay of eight metabolomics 1H NMR spectra.

Figure 2. PCA scores of the 37 1H NMR spectra of the serum samples of
diabetic (black) and non-diabetic (green) patients. From this plot it is
evident that samples 8 and 37 are outliers.

Figure 3. PCA scores of the 35 1H NMR spectra of the serum samples from
diabetic (black) and non-diabetic (green) patients after samples 8 and 37
were excluded as outliers. Similar to Figure 1, PC1 and PC2 provides a
clear differentiation between the two groups of samples.

Figure 4. PCA loadings of PC1, which shows that spectral points around
1.18 (A) and 1.30 ppm (B) contribute most significantly to the first principal
component. Peaks between 3.37-3.68 ppm (C) and those between 3.71-
4.04 ppm (D) also contribute significantly to PC1. The peaks in the loadings
plot are searched against a spectral library of 225 metabolites and D-
glucose is returned as the top hit.

Figure 5. The loading plot of PC1 (Fig. 4) is searched against a spectral
library of 225 common metabolites (tolerance = 0.01 ppm, minimum
number of peaks to matach = 8), and D-Glucose is returned as the top hit.
Note that from the Property Pane, links are provided for browsing other
properties of the hit, such as its relevant metabolic pathways from the
KEGG database.

Discussion
The great variability among the spectra can be seen using the
overlay display of some of the spectra (Figure 1). The strong
water peaks at about 4.8 ppm make the spectral range
between 5.15 to 4.75 ppm inaccessible and is hence
excluded from the analysis. It is also noted these spectra
showed little local peak shifts, except for the water and DSS
peaks. By aligning the spectral globally using the peaks
between 4-3 ppm, or by simply setting the reference to a
certain data point (instead of to the top of the DSS peak), it
effectively eliminated the cross spectra misalignment.



Figure 7 shows the OD heatmap consensus spectra (a
mathematically reconstructed spectrum created from the
maximum spectral y-values at each spectral x-value from a
heatmap) retaining 80% common features among the spectra
of each group. The black and red curves correspond to the
normal and diabetic groups, respectively. Comparing the
normal curve to the diabetic curve, it is easy to see that the
most significant difference between the two groups is the
newly emerged peaks between 1.19-1.14 ppm (A), and the
new peaks between 3.60-3.51 ppm (B) and 3.80-3.73 ppm
(C). These observations agree with those from the loading
plots. The difference spectrum is generated between the two
OD consensus spectra and is searched against the 225
metabolites, and again D-glucose is returned as one of the
top hits.

Based on the published peak assignments of human serum
spectrum [4], these changed chemical shifts can be assigned
to the CH3 groups (0.91 ppm) and (CH2)n groups (1.26 and
1.30 ppm) of the fatty acid side chains in lipids, in particular
LDL and VLDL; 3-hydroxy butyrate isobutyrate (1.18 ppm),

Figure 6. Overlap Density heatmap of spectra in both groups (Above:
normal; below: diabetic). From red to violet are spectral areas with high to
low levels of overlap.

Figure 7. Overlap Density heatmap profiles showing 80% of the common
features of each group (Black: the normal group. Red: the diabetic group).
Comparing the two profiles allows one to easily identify the major
differences between the groups. The difference spectrum (no shown) is
searched against a spectral library of 225 metabolites and D-glucose is
returned as the top hit.

Figure 8. PCA scores of the 35 1H NMR spectra of the serum samples from
diabetic (black) and non-diabetic (green) patients after samples 8 and 37
were excluded as outliers. Prior to the analysis, the spectral regions were
divided into 235 bins of width of 0.04 ppm.

Figure 9. PCA loadings of PC1 from the analysis with binning. Compared
to Figure 4, this loadings plot has a much lower resolution and gives less
information about the changed chemical shifts.

lactate (1.34 and 1.38 ppm) and sugar, glycerol, and amino
acid CH (corresponding to the region near 3.5ppm).

In most of the published applications, the spectra were sub-
sampled into bins usually with a width of 0.04 ppm. To
compare the results with or without binning, we repeated the
previous experiment with an IntelliBucketTM algorithm, which
first divides the spectra into bins with binning in the same
spectral regions using a fixed width of 0.04 ppm, and then
optimizes the boundaries of the bins within a variation range of
± 0.02 ppm. Referring to the OD consensus spectrum of 80%
commonality of all the spectra, the edges of a bin are adjusted
so that the nearby local minimum, if any, is used. This
produced 235 bins with various bin width. As demonstrated in
Figure 8, the scores plots show very similar clustering of the
samples as shown in Figure 3, where binning was not done.
However, the loadings plot of PC1 (Figure 9) is of much lower
resolution than the one without binning (Figure 4), and hence it
is harder to map the bins to the changed chemical shifts.
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Conclusions
This technical note demonstrates the potentials of applying
NMR-based metabolomics in disease diagnostics and in order
to identify the changes of metabolic pathways. While further
elaboration can be made in the analyses from this initial study
in the future and continued improvements will be made in
future generations of the software, the following conclusions
can be currently drawn:

1. The macro-based batch processing of metabolomics
NMR spectra using KnowItAll® ProcessIt™ NMR and
MineIt™ significantly improves the efficiency of spectral
processing and management, which is usually both
tedious and time consuming.

2. Principal Component Analysis (PCA) of the
metabolomics NMR data of the serum samples using
KnowItAll® Informatics System's AnalyzeIt™ MVP
application provides a reliable way to diagnose diabetes.

3. The traditional PCA loadings plots and the novel OD
heatmap profiles generated using the KnowItAll®

platform provide different approaches to identifying the
differences between the spectra, which opens the door
to further identifying key metabolites or biomarkers.

4. Searching a spectral library of common metabolites
provides a helpful method for identifying changed
metabolites.

5. When spectral misalignment is not serious, it is
preferable to run the PCA analysis of the metabolomics
NMR data at the datapoint resolution, rather than using
the traditional binning and bucketing.
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