您好,欢迎您查看分析测试百科网,请问有什么帮助您的?

稍后再说 立即咨询
上海昊量光电设备有限公司
400-6699-117转1000

分析测试百科网 认证会员,请放心拨打!

分析测试百科网 > Photon etc. > 高光谱仪/高光谱成像仪 >  激光荧光显微高光谱成像系统

激光荧光显微高光谱成像系统

参考报价: 面议 型号: IMA_Fluorescence_EL_PL
品牌: Photon etc. 产地: 加拿大
关注度: 462 信息完整度:
样本: 典型用户: 暂无
仪器类型地面/机载均适用价格范围10万-30万
工作原理推扫型成像方式二元光学元件
空间分辨率(IFOV)456成像分辨率46
光谱范围46使用状态地面/机载均适用
视场(TFOV)456光谱分辨率456
成像方式 二元光学元件工作原理推扫型
帧频 45634
白银会员

诚信认证:

工商注册信息已核实!
扫一扫即可访问手机展台
咨询留言 在线咨询

400-6699-1174994

AI问答
可以做哪些实验,检测什么? 可以用哪些耗材和试剂?

高速读取荧光高光谱

均化激光不会损伤细胞等样品

非逐点扫描

高速PL/EL Mapping

 

 

基于独特的体布拉格光栅滤波片技术(BTF)和光致发光成像技术,Photon etc公司最新推出的IMA激光荧光/光 致发光显微高光谱成像系统,采取革新的二维成像的方式,激光经过扩束后再经过匀化,将高斯分布的点激光扩展成平面均匀分布面激光,面激光均匀照射在样品 上,可以直接获得整个样品的荧光高光谱信息。从而获得分子结构方面的信息。有别于传统的激光荧光显微高光谱系统以逐点扫描的方式,而是一次性的获取整个样 品的光谱信息,故而只需要更短的成像时间以及具有更高的空间分辨率。

 


关键词:共焦荧光成像系统,共聚焦荧光成像系统,共焦荧光光谱成像系统,共焦荧光成像光谱仪系统,成像光谱仪,光致发光高光谱成像仪,激光荧光成像系统, 荧光显微成像系统

 

 


IMA荧光(EL/PL)显微高光谱成像仪

 

基于独特的体布拉格光栅滤波片技术(BTF)和光致发光成像技术,Photon etc公司最新推出的IMA激光荧光/光 致发光显微高光谱成像系统,采取革新的二维成像的方式,激光经过扩束后再经过匀化,将高斯分布的点激光扩展成平面均匀分布面激光,面激光均匀照射在样品 上,可以直接获得整个样品的荧光高光谱信息。从而获得分子结构方面的信息。有别于传统的激光荧光显微高光谱系统以逐点扫描的方式,而是一次性的获取整个样 品的光谱信息,故而只需要更短的成像时间以及具有更高的空间分辨率。

 

 


设备原理图:

 


 

系统参数:

 


VIS

VU

光谱范围

400-1000nm

900-1700nm

光谱分辨率

<2.5nm(最小可到0.2nm)

<4nm(最小可到0.4nm)

图像分辨率

亚微米

亚微米

成像速度

20x20μm in 1s @100X

20x20μm in 1s @100X

激发光源

488nm,515nm(可选其他波长)

808,980nm(可选其他波长)

CCD

科学级CCD,背照式CCD,EMCCD等

InGaAs相机

显微镜

倒置或正置

倒置或正置

物镜

20X,60X,100X

20X,60X,100X

 

IMA的典型应用:

 


NANOPARTICLES IN CANCER CELLS


Dark field illumination is commonly used for the analysis of biological samples containing nanomaterials that significantly scatter light. When combined to hyperspectral imaging, it becomes an exceptional tool to also detect the composition and the location of nanomaterials embedded in cells. IMATM, Photon etc.’s hyperspectral imager, can be equipped with a highly efficient dark field condenser and generate high contrast images of biological samples.

 

The high throughput of Photon etc.’s hyperspectral filter allows the rapid acquisition of spectrally resolved high resolution images. Since the camera captures the whole area in the field of view, it is possible to collect spectral and spatial information in real time, with the possibility of recording spectrally resolved videos to follow the dynamics of cells and luminescent nanoscale components. PHySpecTM, Photon etc software, enables principal component analysis (PCA) in order to identify the smallest variations of single and aggregated nanoparticles.

 

With the purpose of showing the capabilities of IMATM to analyse nanomaterials in biological systems, a sample of MDA-MB-23 human breast cancer cells has been tagged with 60 nm gold nanoparticles (GNPs) and exposed to a dark field illumination on the entire field of view (Figure 1). With a 60×objective, an area of 150×112 μm was imaged, with a step of 2 nm and an exposition time of 2 s per wavelength. The complete analysis took only a few minutes, for more than one million spectra, each of them covering the whole visible spectrum.

 

Cells typically have a flat scattering spectrum, whereas GNPs show a sharp peak around 550 nm. Figure 2 illustrates the 550 nm image extracted from the dark field hyperspectral cube of the breast cancer. The GNPs are marked with a green colouring after PCA software processing. The magnification of a breast cancer cell (Figure 3a) and the spectra of the regions containing GNPs (some examples in Figure 3b) confirmed the presence of single 60 nm NPs (peak at 550 nm) and their aggregates (peaks red-shifted). The hyperspectral camera did not detect any GNPs in the areas between the cells.

 

 




CHARACTERISATION OF SOLAR CELLS USING HYPERSPECTRAL IMAGER


A new characterization method based on hyperspectral imaging recording spectrally resolved images allows the cartography of electroluminescence (EL) and photoluminescence (PL). From the data acquired, spatial variations of cell properties such as open circuit voltage and transport mechanisms were identified and characterized. Furthermore, the system was compared to a classical confocal microscope, showing significant gains in acquisition time.

 

Spectrally resolved images provide considerable advantages such as, absolute calibration of intensity, micrometer scale resolution, and excitation and detection on a surface (no information loss from lateral diffusion and roughness). In luminescence imaging, absolute calibration is a main concern and is here done in two steps: first, an absolute calibration at a determined point (spatially and spectrally) with a laser, and then a relative calibration on the whole space and the whole spectrum, with a calibrated lamp coupled to an integrating sphere.The images rendered by IMATM are spectrally resolved luminescence images from multicrystalline CIS solar cell, offering means of studying its spatial inhomogeneities. On high efficiency GaAs solar cells, we got absolute measurements of EL and successfully investigated reciprocity relations. Our next step is to record quantitative maps of CIGS physical properties from PL and EL images, such as VOC , transport parameters and more.

 

A confocal microscope coupled to a spectrometer provides similar data. The 532nm laser is focused onto the cell front contact, and the cartography of PL spectra is obtained by scanning the sample. The acquisition time with the imager is much faster. 150*150μm2 at 107 W/m2 would take hundreds of hours in confocal, but only 8min with IMA. Moreover, surface excitation and detection allow to get rid of diffusion and roughness troubles for quantitative analysis.

 




激光荧光显微高光谱成像系统信息由上海昊量光电设备有限公司为您提供,如您想了解更多关于 激光荧光显微高光谱成像系统报价、型号、参数等信息,欢迎来电或留言咨询。

注:该产品未在中华人民共和国食品药品监督管理部门申请医疗器械注册和备案,不可用于临床诊断或治疗等相关用途

激光荧光显微高光谱成像系统 - 产品推荐
移动版: 资讯 直播 仪器谱

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号