

使用精确质量LC-MS和集成的科学信息系统 筛查环境样品中的多种化合物

Gareth Cleland, Claude Mallet和Jennifer Burgess 沃特世公司(美国马萨诸塞州米尔福德)

应用优势

- 使用高分辨质谱 (HRMS) 筛查不同种类 和结构的多种目标化合物。
- 使用ACQUITY UPLC® HSS C₁₈色谱柱进行 更快速的UPLC®分析。
- 将母离子和碎片离子的精确质量数 信息集成到鉴定和审查过程中。

沃特世解决方案

Waters® UNIFI®筛查平台解决方案 ACQUITY UPLC I-Class系统 Xevo® G2-S QTOF质谱仪 ACQUITY UPLC HSS色谱柱

关键词

药物,个人护理产品,PPCP,环境水样品,UNIFI,筛查,HRMS

简介

全世界范围内的水体中都出现了越来越复杂的药物和个人护理产品 (PPCP) ¹残留,因此,我们亟需开发用于筛查这些化合物的技术。 图1列举了PPCP化合物及其类别。

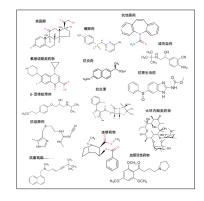


图1. PPCP化合物类别

传统的MS/MS筛查方法,使用串联四极杆质谱仪,由于仪器的最大循环周期所限,其期一次筛查的目标物数目有限。理论上,采用高分辨质谱仪非靶向采集的数据,可鉴定任意数量的化合物。此外,当目标化合物数量较多,且仅以精确质量作为污染物鉴定的唯一手段时,会出现大量误检,而利用URLC/MS平集的丰富数据集,可降低误检的数量。仅通过一次进样,MSF就能提供母离子和碎片离子的精确质量数信息。

通过与UNIFI相结合的集成科学信息系统,我们能在常规的实验室环境中筛查PPP及其碎片、加合物,以及它们的潜在代谢物。本文采用沃特世筛查平台解决方案与UNIFI毒理学数据库,对当地井水样品中的大量(1000种)PPP、农药和滥用药物进行筛查。

实验

样品制备

制备了以下样品。PPCP标准品: 使用 UHPLC级水,制备高浓度标准溶液(10 $\mu g/L$) 。

空自提取样品: 作为参比样品。 UHPLC级纯水 (Fisher Optima), 使用图2所 示的方案进行浓缩。

井水提取样品: 作为未知样品。按照上 述方法,浓缩的井水样品。

先提取、后加入PPCP的井水样品: 按照 上述方法浓缩后、加入表1所列的35种 PPCP, 使其浓度为1 µg/L。

先加标、后提取的标井水样品: 向井水 样品中预先加入表1所列的35种PPCP(1 ng/L 浓度), 然后按照上述方法进行浓缩。平 行制备两份预加标的样品。

未提取的井水: 未浓缩也未加标的井水 样品。

提取的校准标准品溶液: 将表1所列的 35种PPCP加到UHPLC级水中,分别加至8 个浓度(1.0、2.0、2.5、5.0、10.0、25.0 和50.0 ng/L), 然后按照上述方法进行浓 缩。

LC-MS条件

使用UPLC/MS^E数据采集模式、采集综合 数据。MSE采用模式是: 低碰撞能量和 高碰撞能量质谱信息同时采集, 仅通过 单次进样,就能提供母离子和子离子的 精确质量信息。

UPLC条件

LC系统: **ACQUITY UPLC I-Class**

运行时间: 15.00 min 流速: 0.40 mL/min 进样量: 100.0 μL

色谱柱: ACQUITY UPLC HSS C.,

1.8 µm, 2.1 x 150 mm

柱温: 50°C

流动相A: 5 mM NH₄HCO₂水溶液,

用甲酸调pH至3.0

流动相B: 0.1% (v/v)甲酸的乙腈溶液

	\ - \-	>> -T T□		>> - I I□		
	流速	流动相		流动相		
时间	mL/min	<u>A</u>		<u>B</u>	E	曲线
0.00	0.400	87.0		13.0	ì	纫始
0.50	0.400	87.0		13.0		6
10.00	0.400	50.0		50.0		6
10.75	0.400	5.0		95.0		6
12.25	0.400	5.0		95.0		6
12.50	0.400	87.0		13.0		6
15.00	0.400	87.0		13.0		6

MS条件

MS系统: Xevo G2-S QTOF

电离模式: ESI+ 扫描时间: 0.2 s 毛细管电压: 1.0 kV 采样锥孔.电.压: 20.0 V 离子源温度: 120°C

脱溶剂气温度/

脱溶剂气流量: 550°C/1000 L/H 质量范围: m/z 50-1200 MS^E低碰撞能量: 4.0 V

MSE高碰撞能量: 10.0-45.0 V LockSpray™溶液: 亮氨酸脑啡肽 LockSpray质量: m/z 556.2766

由于PPCP化合物具有广泛的化学多样性,因此对这些结构多样、种类繁多的化合物进行提取、分离,就成为一个极大的分析挑战。我们采用一种混合模式固相萃取方法制备样品,如图2所示,该方法在先前的研究中进行过介绍²。

之所以选择那些加标浓度,是因为样品制备要实现1000倍的浓缩。 样品中1 ppt (1 nq/L)的浓度相当于浓缩后加标样品中1 ppb (1 μq/L)的浓度。

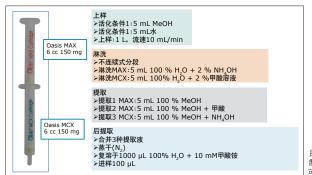


图2. 用于提取水样品的样品 制备方案。该样品制备方案 可实现1000倍的浓缩。

对乙酰氨基酚	可待因(Codei	ne)萘普生	磺胺甲 噁 唑
阿替洛尔	皮质酮	氧氟沙星	噻氯匹定
阿奇霉素	可的松	氧烯洛尔	甲苯磺丁脲
苯佐卡因	可替宁	普鲁卡因	曲安奈德
溴己新	异羟基洋 地黄毒苷	异丙嗪	甲氧苄氨嘧啶
盐酸丁咯地尔	酮洛芬	乙胺嘧啶	曲普利啶
氯苯那敏	左旋咪唑	雷尼替丁	华法林
西咪替丁	美托洛尔	罗红霉素	甲苄噻
可卡因	咪康唑	沙丁胺醇 (舒喘宁)	

表1. 分析中所使用的35种PPCP。

数据处理

收集了所有的MS模式采集的数据,并使用UNIFI科学信息管理系统进行处理。在UNIFI中,数据经过了峰顶检测和校准处理算法处理³。这样就能够将相关的离子组分分到一组,作为单个实体进行分析。带电组分、盐加合物和碎片都可自动进行校准和分组,因此所有这些信息都能用于自动数据解析。

采用的UNIFI的法医毒理学筛查应用解决方案,包括了分析方法中预设的液质条件和处理参数4。UNIFI中的毒物筛查数据库中有1000余种化合物,其中包括多种PPO,例如滥用药物、兽药和人用药物。数据库条目中包含名称、分子式、结构式mol文件、保留时间和碎片离子理论精确质量数。

结果与讨论

对加入井水样品中的化合物进行分析,证明了该方法的定向分析能力。某标准品的校准曲线示例如图3所示。 井水样品中没有检测到35种标准品中任何一种的残留。

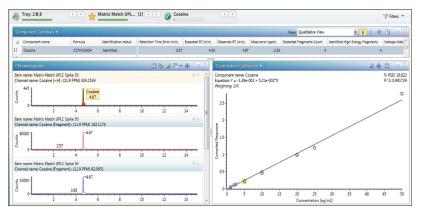


图3.一个基质匹配的可卡因标准品的UNIF定量分析示例。鉴定详情见组分汇总部分。母离子和碎片离子的萃取离子 色谱图展示在色谱图部分,重复进样及校准曲线结果见定量校准部分。

为了确定是否存在其它化合物,毒物筛查数据库中的每个条目都包括多达3种加合物(H+、Na+、K+)。前已证明,根据大型数据库进行筛查时,如果仅使用一种诊断离子的精确质量,就会导致过多的误检5。先前的工作还强调,分辨率高、重现性好的色谱分析对于降低误检率至关重要6。本研究所使用的方法充分利用了UNIFI科学数据库中储存的保留时间和碎片离子精确质量信息。在质量数准确度允许偏差为5 ppm,保留时间偏差为0.5 min,并且至少要检测到1种碎片离子的条件下,检测到井水样品中存在4种残留成分。这些残留成分如表2和图4所示。

Cor	Component Summary • View: "Qualitative View						· 😱 v 🦛	
4	Component na	Formula	m/z	Retention Time Error (min)	Mass error (ppm)	Identified High Energy Fragments	Response	Adducts
1	Carbamazepine	C15H12N2O	237.1021	0.21	-0.62	3	10282	+H
2	Hexamine	C6H12N4	141.1136	0.38	0.92	3	40806	+H
3	Imidacloprid	C9H10CIN5O2	256.0597	0.18	0.66	1	7907	+H
4	Tramadol	C16H25NO2	264.1956	0.42	-0.68	1	16859	+H
				"				

表2. 根据包含1000余种化合物的数据库对井水提取样品进行筛查所得到的UNIN组分汇总表,展示了每种 已鉴定化合物的详细信息。

通过使用现成的标准品和现有的MS/MS串联四极杆质谱方法,我们确证和定量分析了卡马西平和吡虫啉。具体操作方法 是将标准品加入未经提取的井水样品中,然后直接进样、采用ACQUITY UPLC I-Class系统和Xevo TQ-S串联质谱仪进行分析 (数据未显示)。检测到这两种成分的浓度分别为0.31 ng/L和0.58 ng/L。没有对曲马多和乌洛托品进行确证或定量分析。

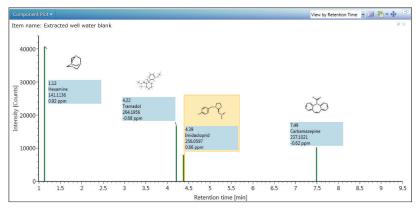


图4. UNIFI中根据保留时间鉴定出的所有组分的结构式。每个鉴定结果都能根据用户的规定进行标注。在本例中,标注了结构、保留时间、化合物名称、预期m/z和质量误差(ppm)。

在UNIFI中,鉴定的条件完全是可定制的,从而给予用户最大的灵活性。图5中的柱状图展示了对包含表1中35种化合物的样品进行鉴定时,改变保留时间偏差所得到的结果。在质量准确度偏差为5ppm(SANC0 12495准则)且没有保留时间或碎片离子标准时,反馈了735个阳性结果(图5中最右边的红色柱状图)。结合保留时间并降低其偏差后,误检数量下降(图5中的红色柱状图)。即使将保留时间的容差设定为1 min,阳性结果的数量也减少了65%以上。当然,如果该偏差值设定过低,假阴性结果数量可能会上升,正如这35种添加的化合物在偏差为0.25 min或更低时,测定结果所示(图5中的紫色柱状图)。当碎片离子被用于提高鉴定能力的条件时,误检的数量明显降低(图5中的绿色柱状图)。

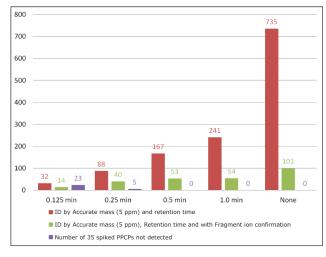


图5. 在鉴定条件中 使用保留时间和碎 片离子时,展示误 检数量下降情况的 柱状图。

HRMS筛查成功的关键: 是采用较宽松的允许偏差, 但使用多重筛查条件。这样就能在假阴性结果最少的 同时、显著降低假阳性的数量。UNIFI为用户提供了可在简化的工作流程中、灵活组合多种鉴定条件相、 实现快速的数据筛查,并提高分析人员的工作效率。

结论

- 使用SPE方案,对当地的井水样品进行浓缩,然后进行 HRMS筛查,结果:在该样品中,检测到4种目标化合物。
- 使用混合模式SPE方法,可同时分析单个样品中所含的 酸性、碱性和中性目标化合物。
- 毒物筛查数据库中所包含的保留时间和碎片离子的精 确质量信息能降低误检率、这对干筛查实验中的快速 数据筛查来说至关重要。
- 使用容许误差较大的多种鉴定条件、可控制误检数量、 并使HRMS筛查的假阴性结果最少。

猫女老参

- 1. S Richardson. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Anal Chem. (2012), 84: 747-778.
- 2. C Mallet, G Cleland, J A Burgess. Multi-Residue Analysis of Pharmaceuticals and Personal Care Products (PPCPs) in Water Using the ACQUITY UPLC H-Class Sustem and the Xevo TOD Tandem Mass Spectrometer, Waters Application Note No. 720004813en, October 2013.
- 3. Geromanos et al., The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics (2009) 9: 1683-1695.
- 4. J Archer, P Dargan, D Wood, N Mistry, M Wood. Screening for Classical and Novel Drugs in pooled urine using UPLC-TOF-MSE). Waters Application Note No. 720004583en, June 2013.
- 5. Mol et al. Anal Bioanal Chem. (2012) July; 403(10): 2891-2908.
- 6. Croley et al. J Am Soc Mass Spectrum. (2012), 23: 1569-1578.

Waters

THE SCIENCE OF WHAT'S POSSIBLE.®

Waters, UPLC, ACQUITY UPLC, UNIFI, Xevo和 The Science of What's Possible是沃特世公司的注册商标。 LockSpray是沃特世公司的商标。其它所有商标均归各自的拥有者所有。

©2013沃特世公司 中国印刷 2013年10月 720004810ZH AG-PDF

沃特斯中国有限公司 沃特世科技(上海)有限公司

北京: 010-5209 3866 上海: 021-6156 2666 广州: 020 - 2829 5999 成都: 028 - 6578 4990 香港: 852 - 2964 1800

免费售后服务热线: 800 (400) 820 2676

www waters com