诺贝尔物理学奖获得者卡罗·卢比亚在不久前的诺贝尔北京论坛上评论说,中微子振荡实验(OPERA)很重要,令科学家意外发现了中微子可以超越光速,但他认为他们过早地发表了结果,应该进一步研究,考虑各种可能性,更加认真地对待。

  欧洲核子中心OPERA实验的研究人员自己也表示要继续研究系统误差,这个实验出现的反常很可能是系统误差引起的,不排除用系统误差进行解释。而我要讲的和强调的是:我们所有实验和理论研究都是朝着发现新现象和提出新理论,超越爱因斯坦和前人研究成果这个目标而努力的,爱因斯坦本身就超越了牛顿。我们知道,所有实验都是在一定条件下做的,当实验条件和环境等改变以后,物理现象也可能就会随之发生变化,这是科学家们在研究时的重要出发点和探索目标。

  众所周知,相对论和量子论是上世纪建立的两个奠基性理论。爱因斯坦的贡献除了狭义相对论外还有广义相对论。狭义相对论实际上是纯运动学的理论,广义相对论是动力学理论,回答粒子受力或物质之间有了相互作用以后是怎么加速运动或改变运动状态的。狭义相对论的运动学理论加上量子力学,成功地建立了量子场论,并由此描述所有三种基本相互作用(即电磁相互作用、弱相互作用和强相互作用)而建立起粒子物理标准模型。参与电磁相互作用而稳定存在的粒子有光子、电子和夸克,只参加弱相互作用而稳定存在的粒子就是中微子,还有一个稳定存在的粒子是由参加强相互作用的夸克而形成的质子。需要一提的是狭义相对论中用到的洛伦兹变换,它本身是一个数学上的坐标变换,虽然其在爱因斯坦之前已经存在,但爱因斯坦的贡献在于解释洛伦兹变换所隐含的物理含义。