关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

苏州纳米所开发出可以“看到”载流子的新型纳米成像技术

2015.10.09

  目前,纳米材料已经被日益广泛地应用在电子、光电、生物电子、传感以及能源等领域的各种器件中。因此,理解和表征纳米材料的电学性能不仅是基础科学研究的兴趣所在,也是实现其广泛实用化的迫切需求。但是,传统的场效应晶体管(field-effect transistor, FET)方法在纳米材料电学性能的表征中遭遇到器件制备过程复杂、材料-电极欧姆接触不易实现以及检测通量较低等问题。

  中国科学院苏州纳米技术与纳米仿生研究所研究员陈立桅课题组与合作者共同发展了一种名为介电力显微术(dielectric force microscopy, DFM)的新型功能成像技术来解决上述难题。相关综述发表于近期的Accounts of Chemical Research 期刊(Accounts of Chemical Research 48:1788 (2015) )。

  半导体和金属材料对于外部电场介电响应的主要贡献来自于载流子迁移引起的宏观极化。因此,材料中的载流子浓度及其迁移率既决定了该材料的介电响应也决定了它的电导率。借助于扫描探针技术对微小作用力的超灵敏检测(~pN),DFM通过测量材料的诱导偶极与针尖上的电荷之间的相互作用力来表征纳米材料的介电响应。此成像模式无需电极接触即可“看”到纳米材料中的载流子(图a)。以单壁碳纳米管(直径~1nm)和氧化锌纳米线(直径~30-50nm)作为研究模型,DFM成功地实现了对纳米材料介电常数的测量(Nano Letters 7:2729 (2007))、半导体与金属导电性的分辨(Nano Letters 9:1668 (2009))以及半导体材料中载流子类型的判定(Journal of Physical Chemistry C 116:7158 (2012))(图e-g)。更为有趣的是,DFM展现出传统FET方法无法实现的~20nm 的空间分辨率。

  此外,陈立桅与合作者通过比对同一单壁碳管的DFM与FET测量结果,证实了DFM与FET互为平行测量手段(Nano Research 7:1623 (2014))。相关研究结果揭示了DFM信号的门控调制比(DFM信号在不同门电压下的比值)正比于FET器件开关比的对数(图b)。这个半对数关系得到微观层面的Drude模型的解释和证实(图c)。这一模型将对未来DFM技术在不同材料与器件体系中的应用提供一个理论框架。

  在纳米材料电学性质测量领域中,由斯坦福大学教授沈志勋(Zhi-Xun Shen)开发的扫描近场微波显微术(scanning near-field microwave microscopy)具有与DFM类似的特性与功能(Review of Scientific Instruments 79:063703 (2008))。扫描近场微波显微术与DFM均具有无接触测量和纳米尺度空间分辨率等特性。不同的是,扫描近场微波显微术和DFM分别测量材料的高频和低频介电性质。DFM无需昂贵的高频网络分析器和特制的扫描探针,因而便于应用在多种复杂成像环境中。DFM这一成像模式可能在未来的基础研究与工业在线监测领域获得广泛应用。

  相关系列工作由国家自然科学基金、中科院先导专项计划、江苏省自然科学基金、美国化学会石油研究基金会和苏州纳米科技协同创新中心提供资助。

128328_201510091009361.jpg

  图:(a)DFM二次扫描模式示意图。(b)DFM门控比与FET器件开关比之间的半对数关联性。(c)DFM信号与载流子浓度和迁移率依赖性的数值模拟结果。DFM纳米尺度空间分辨率展示:内部具有金属-半导体结的单壁碳管的形貌像(d)和介电响应像(e-g)。

推荐
关闭