微流控芯片的产业化:坚持中迎来曙光

2010-9-26 11:29 来源: 仪器信息网
收藏到BLOG

  ——访浙江大学微分析系统研究所所长方群教授

  微流控芯片分析是当前的科技前沿领域之一,其目标是通过对芯片微通道网络内微流体的操纵和控制,完成化学实验室中取样、预处理、反应、分离和检测等分析功能,实现分析装备的微型化、集成化和自动化,最终实现芯片化,即所谓“芯片实验室”(Lab-on-a-chip)。微流控芯片已被列入21世纪最为重要的前沿技术的行列。

  浙江大学微分析系统研究所是国内建立较早的专门从事微流控芯片相关技术研究的科研机构,建所十年来取得了许多研究成果。2010年8月21日,在第三届全国生命分析化学学术报告与研讨会上,仪器信息网编辑(以下简称“Instrument”)就该研究所的情况与微流控芯片的研究现状、技术发展、产业化等问题采访了浙江大学微分析系统研究所所长方群教授。

  Instrument:方教授,您好!首先请您介绍下浙江大学微分析系统研究所的相关情况,以及贵所建立以来在微流控技术方面取得了哪些成绩?

  方群教授:浙江大学微分析系统研究所是我国已故的著名分析化学家方肇伦院士于2000年1月创建,其目标是借助浙江大学学科比较齐全、综合交叉优势明显的特点,发展具有中国特色的微流控芯片分析技术与系统。目前,研究所有教师11名,研究生40余名。

  研究所的研究主要围绕微流控芯片展开,研究方向涉及:微纳流控芯片加工和表面处理技术、工艺;微流体操控技术、方法和理论;微流控芯片取样、试样引入和前处理、反应技术;微流控芯片光谱、电化学、质谱检测技术研究;基于微流控原理的液滴分析、毛细管电泳、流动注射分析、生物传感器分析系统研究,以及纳米技术和仿生技术在微流控系统中的应用;基于微流控技术的微型化分析仪器研制;微流控系统在生物分析、单细胞分析、蛋白质组研究、临床检验、高通量筛选中的应用。

  目前,研究所在微流控芯片简易加工技术、微流控试样引入技术、微流控单细胞分析的集成化、微流控荧光和光度检测系统的微型化等方面,取得了具有国际先进水平的研究成果。十年间,研究所发表了140余篇高水平的SCI论文,共承担和参与省部级以上项目50余项,申请国家发明专利40余项,其中20余项已获授权。2003年科学出版社出版了由方肇伦院士主编,研究所全体老师参加撰写的国内第一部有关微流控芯片的专著“微流控分析芯片”。研究所还研制了多种具有自主知识产权的微流控分析仪器装置或样机,为相关仪器的产业化创造了有利基础。

  Instrument:您是973项目“微流控学在化学和生物医学中的应用基础研究”中“高速及多通道阵列微流控分离检测新方法的研究”课题的负责人,请谈谈该课题的进展情况,以及到目前为止取得了哪些成果?遇到了哪些困难?

  方群教授:由复旦大学杨芃原教授任首席科学家,由全国11家单位参加的973项目“微流控学在化学和生物医学中的应用基础研究”分为6个课题,我所负责的是其中第三课题,参与单位有浙江大学、中科院大连化学物理研究所、东北大学和中科院长春应用化学研究所,主要进行高速及多通道阵列微流控分离检测新方法的研究。目前,该课题研究进展顺利,已取得一些出色的研究成果,预计能够完成既定目标。

  我的研究组主要进行了微流控系统的试样引入技术研究,将微流控芯片与缺口管阵列结合,进样通量最快可以达到6000个样品/小时,这是目前文献报道中单通道通量最高的芯片进样方法。同时,我们通过将自发进样技术与基于短毛细管和缺口管阵列的毛细管电泳(CE)系统相结合,建立了一种微流控平移自发进样方法,将进样量减少至低于100pL的水平,并进一步将该方法应用于高速毛细管电泳(HSCE)分析,建立了一种通用型的HSCE系统。该系统应用于氨基酸试样的电泳分离,其分离速度和效率等性能已经达到甚至优于芯片HSCE系统。在此基础上,研究组还将皮升级平移自发进样方法及其HSCE系统成功地应用于基于胶束电动色谱模式的氨基酸手性分离和基于凝胶电泳模式的DNA片段和蛋白质分离中。

  近期,我们研究组还研制了一种用于纳升级试样测定的全集成微型化手持式光度计。该光度计所有部件包括双波长紫外发光二极管(LED)光源、光电二极管检测器、长光程液芯波导检测池、微量试样驱动装置、控制电路、液晶显示器和电池均集成于12cm×4.5cm×2.1cm 的仪器内。该仪器成功应用于微量DNA 试样的纯度和含量测定,以350nL的试样消耗获得了约15mm的有效光程。对比商品化的微消耗光度计,手持式光度计以其1/3的试样消耗量获得了其15倍的检测光程,且价格低廉,在现场分析和即时检验等领域具有很好的应用前景。此外,我们还将该光度计与缺口管阵列结合,成功用于血清中总胆固醇含量的快速自动分析。

  在研究中,我们确实遇到了一些困难。首先,寻找能产生原创性成果的研究方法和思路是一个难点。其次,微流控芯片的研究是多学科综合性交叉的研究,需要生物、医学、光学、机械、电子等其他研究领域人员的参与,但我们现在缺乏这方面的人才。再有,微流控芯片的研究成果产业化困难。实验室的研究出来的装置距离市场上出售的产品有相当大的距离,这里面还涉及到与企业之间的合作等诸多问题,所以比较困难。

  Instrument:下一步微分析系统研究所的工作将主要集中在哪些方面?

  方群教授:研究所成立之初,当时的浙江大学校长潘云鹤院士对我们的期望是“顶天立地”。“顶天”即要做好原创性的基础研究,“立地”就是要把研究成果实现产业化,做成商品化仪器,应用于各种实际应用领域。微流控芯片的研究已有近二十年的历史,目前,在某种意义上,其研究已处于一个“十字路口”的阶段了。所以根据建所之初的规划,以及微流控芯片技术当前的发展状况,我们研究所明确了下一个“十年”的工作方向:

  (1)坚持进行原创性的研究。

  研究所建立之时,方肇伦院士就一直强调要做有创新性的研究工作和要有“小米加步枪”的创业精神。近些年来,我们更是把工作的原创性和系统性放在首位。我们试图走通这样一条道路,即从新现象的发现,到新方法的提出,新系统的建立,一直到新仪器的产业化和实际应用的道路。微流控芯片因其结构微型化,因而具有许多宏观系统不具有的特点。这些特点使其在研究中能够产生一些新现象,基于这些新现象建立的新方法新技术则具有较强的原创性,而基于此研制出的仪器装置和系统是全新的,研究者可以拥有自主知识产权,然后可以将其产业化。所以,原创研究是后续应用和产业化的基础工作,一定要做好。

  (2)研究所将在微流控芯片的应用和产业化方面投入更多精力。

  让微流控芯片产业化,是我们研究所的更高目标。在原创研究的基础上,我们试图将现有的微流控技术研究成果进行整合,构建出完整的仪器,然后将这些仪器推广到多个应用领域,尤其是化学、生物医学、药学、临床检验和现场分析等一些重要领域,希望能够产生重要的影响,对微流控芯片的产业化产生一些推动作用。这方面的工作难度很大,我们将尽力而为。

  Instrument:您前面所说的“微流控芯片技术的研究已处于‘十字路口’阶段”,其具体涵义是什么?能否为我们解释下?

  方群教授:这里我是用“十字路口”这四个字来形容当前微流控芯片技术的研究现状。以在分析化学中的情况为例,微流控芯片出现之初,研究者众多,大家在分析化学的各个领域都进行了普遍地尝试。然而,十多年已过去,微流控芯片分析领域内相对容易研究的领域已基本了解清楚,而剩下的领域和任务都是“硬骨头”。这些“硬骨头”研究难度大、耗费时间长、不易出成果且成果产业化难度大,这需要研究者具有极大的毅力、耐力以及坚持的信心。

  在这样的情形下,研究者们面临着多种选择,也即处在“十字路口”。坚持还是放弃,这是不容易决定的。而我们研究所不会轻易改变研究方向,一定会坚持啃“硬骨头”。

  Instrument:能否谈谈当前我国微流控芯片研究的情况以及在国际上所处的地位?该领域当前的研究热点与难点是什么?未来发展趋势如何?

  方群教授:我国科学家们对微流控芯片的研究大部分从2000年以后开始。2001年,国家自然科学基金委启动了题目为“微流控生化分析系统的基础研究”的重大研究项目,这个项目对我国微流控芯片技术的发展起到很大的推动和促进作用。到2006年,相关的研究几乎是“遍地开花”。到目前为止,我国学者发表的以“微流控(microfluidic)”为主题词的SCI论文数目仅次于美国,位居世界第二。可以说,我国的微流控技术的研究水平在国际上处于较先进的地位,在部分研究领域已具有一定的国际领先优势。

  从已发表的论文来看,目前微流控芯片研究的热点主要集中在以下几个方面:(1)纳流控或微-纳流控;(2)微流控芯片在细胞生物学中的应用;(3)液滴微流控系统。

  我个人认为,未来的五到十年,微流控芯片研究可能会有以下几个发展趋势:

  (1)微流控芯片研究将向极限发展:从微米到纳米,从多细胞到单细胞,从大量分子到单分子,从单一通道到多通道阵列,分析通量越来越高;

  (2)微流控技术不断向其它相关学科渗透,相互间的结合将更为紧密;

  (3)微流控液滴分析将得到很好的发展,尤其在分析化学和高通量筛选领域;

  (4)微流控芯片的应用领域将继续拓展,将有可能成为科学研究的工具;

  (5)微流控芯片将实现产业化,相关仪器将得到推广。

  Instrument:微流控芯片目前的应用领域是哪些?将来可能向哪些领域拓展?目前科学家们是否已经找到微流控芯片的“Killer Application(关键性应用)”?

  方群教授:目前,微流控芯片的应用领域非常广阔,已超出了其创始人原先预料的那些领域。微流控芯片出现后,其应用领域很快从分析化学扩展到医学、药学、生物化学、细胞生物学、分子生物学、合成生物学、环境分析、化工、材料科学,甚至物理光学、计算机学等领域,而且目前还在持续拓展中。

  就目前的情况看,国际上对具体什么是微流控芯片的“Killer Application”,还未形成一致的看法。甚至有科学家认为微流控芯片可能没有“Killer Application”,而是有很多“Application”。通常我们认为微流控芯片分析系统比较适用于药物筛选、疾病诊断,这主要是针对微流控芯片的快速、高通量和低消耗的特点来说的。因为在这两个领域,所要筛选的样品的数量非常之大,并且要求筛查速度快、样品和试剂的消耗量低,而这正好是微流控芯片系统的特点,所以其在这方面将会大有可为。此外,微流控芯片系统微型化、集成化和自动化的特点使得它很适合应用于现场和个体分析。我个人认为:微流控芯片的“Killer Application”最有可能出现在POCT(即时检验,Point-of-Care Testing)领域。

  Instrument:至今为止,国内外仪器厂商只有少数几家公司推出过微流控芯片的仪器,微流控芯片的产业化进程发展比较缓慢。您认为当前微流控芯片产业化的困难在哪里?以及应当如何推进其产业化?

  方群教授:目前,微流控芯片的产业化确实进行得较为缓慢,相关仪器的销售也不尽如人意。追溯微流控芯片产业化的历程,或许我们可以从中得到一些启示。

  微流控芯片出现之初,大家都非常看好它,很多的风险投资蜂拥而至,所以在这个领域,一下子建立了许多的公司,并有相关产品推出。但随后不久,投资企业发现这个领域不能立竿见影,所以就转向了,这就形成了微流控芯片这个领域产业化的低谷。究其原因,我想可能是:最开始大家都看到了这个领域的广阔前景和光明前途,但却低估了该领域研究的难度和技术的复杂性。但是,伴随着产业化的低谷,微流控芯片的基础研究却蓬勃发展起来,进行得如火如荼,这就说明当初人们对这个领域的认识还不够透彻,研究还不够深入,这直接影响了其产业化的进程。

  而先前推出的产品在市场定位上并不明确,这些产品虽有一定的应用领域,但其介于通用与专用之间,难以打开广阔的市场。微流控芯片产业化的困难就在于其相关技术还不是很成熟,科学家们也还没有找到一致公认的“Killer Application”。而促进其产业化,就是要加强相关研究,在技术和应用上寻求突破。目前,微流控芯片历经十几年的基础研究积累,已经到了一个可以出一些重要的产业化成果的阶段。最近,已经出现了一些好苗头,一些公司又推出一些新的产品,利用微流控芯片完成样品的前处理,然后与其他仪器联用。这些仪器可以手提,可以做现场检测,将会有广阔的应用前景。

  这说明微流控技术的产业化虽然还有较长的路要走,但已曙光初现。我们希望有远见和有实力的企业能够加入到这一进程中,与科学家们一起合作努力,以早日实现微流控技术的全面产业化和广泛的普及应用。

  后记

  在近两个小时的采访之中,方群教授一直强调:“微流控芯片的研究目前主要是基础研究为主,微流控技术的产业化需要较长时间来解决一些基本问题。”也许正是因为如此,微流控芯片的产业化之路才走得如此艰难。但即便如此,方群教授以及他所在的浙江大学微分析系统研究所一直“顶天立地”,从未放弃过在微流控芯片科研与产业化方面的努力,他们这种坚持不懈、勇攀高峰的精神让人着实敬佩。

 

  附录1:方群教授简历

  方群,浙江大学化学系教授,浙江大学微分析系统研究所所长。辽宁大学分析化学学士(1985年-1989年),沈阳药科大学药物分析学硕士(1989年-1992年)和博士(1994年-1998年)。目前主要从事微流控分析的研究工作,研究方向包括微流控高通量试样引入和前处理技术、微流控液滴分析和毛细管电泳分析、微流控光谱和质谱检测技术、微型化分析仪器研制,以及微流控系统在生化分析、临床检验、药物筛选、蛋白质组和单细胞分析中的应用。发表研究论文60余篇,参加出版专著2部,申请国家发明专利18项,其中9项获得授权。主持国家和省部级科研项目10项,2006年获得教育部新世纪优秀人才支持计划资助,2008年获国家自然科学基金委杰出青年基金资助。目前担任中国化学会有机分析专业委员会委员。担任“Analytica Chimica Acta”、“Analytical and Bioanalytical Chemistry”、“色谱”、“分析化学”、“分析科学学报”和“化学传感器”的编委。

  附录2:浙江大学微分析系统研究所介绍

  浙江大学微分析系统研究所由我国著名分析化学家方肇伦院士创建于2000年初,目标是发展具有中国特色的微流控芯片(Microfluidic chip)分析技术和系统。微流控芯片分析是当前的科技前沿领域之一,其目标是通过对芯片微通道网络内微流体的操纵和控制,完成化学实验室中取样、预处理、反应、分离和检测等分析功能,实现分析装备的微型化、集成化和自动化,最终实现芯片化-即所谓“芯片实验室”(Lab-on-a-chip),使分析效率成百倍、千倍地提高。

  研究所现有教授5名,副教授5名,实验技术人员1名,博士和硕士研究生40余名。研究所每年在化学一级学科和分析化学二级学科招收博士和硕士研究生10余名,并接受博士后人员和访问学者,同时欢迎生物、医学、药学、生物医学工程、光学、电子学、流体力学等相关专业的同学报考研究生。

  研究所研究方向涉及微纳流控芯片加工和表面处理技术、工艺,微流体操控技术、方法和理论,微流控芯片取样、试样引入和前处理、反应技术,微流控芯片光谱、电化学、质谱检测技术研究,基于微流控原理的液滴分析、毛细管电泳、流动注射分析、生物传感器分析系统研究,以及纳米技术和仿生技术在微流控系统中的应用,基于微流控技术的微型化分析仪器研制,微流控系统在生物分析、单细胞分析、蛋白质组研究、临床检验、高通量筛选中的应用。同时,在此基础上积极寻求微流控分析仪器的产业化之路。

  研究所成立近十年来,在全所师生的共同努力下,取得了可喜的成绩,探索出了一条有中国特色的发展微流控芯片分析的有效途径。在该领域的研究取得一系列重要突破,部分成果,包括:微流控玻璃芯片的简易加工技术、微流控芯片高通量试样引入技术、微流控单细胞分析的集成化、微流控吸收光度和激光诱导荧光检测系统的微型化等在相关学术领域已具备一定国际领先优势。研究所成立以来,共承担和参加省部级以上项目50余项,其中主持国家自然科学基金重大项目1项,国家杰出青年基金1项,国家自然科学基金面上项目11项,主持国家科技部863项目课题1项,973项目课题1项,主持省部级科研项目10余项。发表SCI论文140余篇。申请国家发明专利40余项,其中21项已获授权。2003年科学出版社出版了由方肇伦院士主编,研究所全体老师参加撰写的国内第一部有关微流控芯片的专著“微流控分析芯片”。此外,研究所还研制了多种具有自主知识产权的微流控分析仪器装置或样机,为相关仪器的产业化提供了有利基础。