83.140.30 塑料管、配件和阀门 标准查询与下载



共找到 535 条与 塑料管、配件和阀门 相关的标准,共 36

UHMW-PTE方型耐磨增强管的定义、符号、材料、产品分类与标记、管材结构与连接方式、技术要求、试验方法、检验规则和标志、运输、贮存

UHMW-PTE square wear-resistant reinforced pipe for buried drainage

ICS
83.140.30
CCS
C292
发布
2022-06-18
实施
2022-06-18

埋地排水管使用时承受了一定的外压负载,并深埋于地下受地质土壤环境因素的影响。因此管材设 计的关键要求是在保证环刚度、环柔性、冲击性能、耐老化性能、耐酸碱耐腐蚀等性能条件下实现低碳 环保,FRPO复合增强中空缠绕管作为一种拥有独特生产工艺的产品通过聚丙烯料、纳米材料、增容剂等 高分子共混与改性聚烯烃耐磨料热熔双层复合挤出制成矩管经缠绕成型。管道内外壁光滑平整,在管道 内壁耐磨层加入改性聚烯烃耐磨料,增强管道的耐磨抗腐性延长管道的使用寿命;外壁采用聚丙烯二次 复合缠绕加强,使管材抗压、抗弯、抗拉伸、内承压和缠绕接缝强度大大提高。 本标准规定了FRPO复合增强中空缠绕管(以下简称管材)的术语和定义、符号、材料、管材分类及 标记、结构型式和连接方式、要求、试验方法、检验规则和标志、运输和贮存。 本标准适用于中部矩管采用改性聚丙烯挤出成型同时内壁加入改性聚烯烃耐磨料形成耐磨层,外壁 采用聚丙烯二次复合缠绕加强的中空缠绕管材。 本标准规定的管材适用于长期输送介质温度在45℃以下的无压或低压(0.4MPa)埋地城镇排水、工 业排水以及农田排水等工程。

Group Standard for "FRPO Composite Reinforced Hollow Winding Pipe for Buried Drainage"

ICS
83.140.30
CCS
C292
发布
2022-05-26
实施
2022-05-26

本文件规定了阻燃聚乙烯电线电缆套管(以下简称管材)的分类、要求、试验方法、检验规则及标 志、包装、运输和贮存。  本文件适用于以聚乙烯为主要原料,加入阻燃剂等添加剂,经挤出成型的管材,用于建筑等行业用 的电线电缆套管。

Flame retardant polyethylene wire and cable sleeve

ICS
83.140.30
CCS
C291
发布
2022-05-23
实施
2022-05-24

管材结构、连接方式、颜色、外观、规格尺寸、物理力学性能要求、管材连接时的密封性能(系统的适用性)

Polygonal composite pipes for underground drainage and sewerage- Part 1: Polyethylene(HDPE) wave wheel reinforced composite pipes

ICS
83.140.30
CCS
C292
发布
2022-05-20
实施
2022-06-14

钢纤增强聚乙烯复合管材(以下简称管材)与管件的术语和定义、材料、要求、试验方法、检验规则和标志、包装、运输、贮存。

Cross helically wound steel fibers reinforced-polyethylene composite pipelines

ICS
83.140.30
CCS
C292
发布
2022-05-10
实施
2022-06-02

MUHDPE-PANS合金管的定义、符号和缩略语,材料、管材结构与连接方式、技术要求、试验方法、检验规则、标志、运输、贮存

Muhdpe-PANS alloy pipe

ICS
83.140.30
CCS
C292
发布
2022-04-21
实施
2022-04-21

MUHDPE-PANS缠绕结构壁A型管的定义、符号和缩略语,材料、管材结构与连接方式、技术要求、试验方法、检验规则、标志、运输、贮存

Muhdpe-PANS winding structure wall A-type pipe

ICS
83.140.30
CCS
C292
发布
2022-04-21
实施
2022-04-21

主要技术内容有术语与定义、要求、试验方法、检验规则、标志、包装、运输和贮存。

High density polyethylene (HDPE) pipes and accessories for marine aquaculture cage frame system

ICS
83.140.30
CCS
C292
发布
2022-04-18
实施
2022-04-20

主要技术内容有术语和定义、材料、产品分类、要求、试验方法、检验规则和标志、包装、运输、贮存。

Random copolymerized polypropylene (PP-R) antibacterial pipes for cold and hot water

ICS
83.140.30
CCS
C292
发布
2022-04-18
实施
2022-04-20

Rigid polyvinyl chloride (PVC-U) rainwater pipes and fittings for construction

ICS
83.140.30
CCS
G33
发布
2022-04-08
实施
2022-10-01

本文件规定了以无规共聚聚丙烯(PP-R)混配料为原料,经注射成型的聚丙烯管件(以下简称管件)的术语、定义、符号和缩略语、材料、产品分类、基本要求、技术要求、试验方法、检验规则、标志、包装、运输、贮存、服务承诺。 本文件适用于民用建筑物内冷热水管道系统,包括饮用水和采暖管道系统的 PP-R 管件。 本文件不适用于灭火系统。

Polypropylene random copolymer(PP-R) fittings for hot and cold water

ICS
83.140.30
CCS
C292
发布
2022-03-31
实施
2022-04-30

1.1 This test method describes two essentially equivalent procedures: one for obtaining a long-term hydrostatic strength category based on stress, referred to herein as the hydrostatic design basis (HDB); and the other for obtaining a long-term hydrostatic strength category based on pressure, referred to herein as the pressure design basis (PDB). The HDB is based on the material’s long-term hydrostatic strength (LTHS),and the PDB is based on the product’s long-term hydrostatic pressure-strength (LTHSP). The HDB is a material property and is obtained by evaluating stress rupture data derived from testing pipe made from the subject material. The PDB is a product specific property that reflects not only the properties of the material(s) from which the product is made, but also the influence on product strength by product design, geometry, and dimensions and by the specific method of manufacture. The PDB is obtained by evaluating pressure rupture data. The LTHS is determined by analyzing stress versus time-to-rupture (that is, stress-rupture) test data that cover a testing period of not less than 10 000 h and that are derived from sustained pressure testing of pipe made from the subject material. The data are analyzed by linear regression to yield a best-fit log-stress versus log time-to-fail straight-line equation. Using this equation, the material’s mean strength at the 100 000-h intercept (LTHS) is determined by extrapolation. The resultant value of the LTHS determines the HDB strength category to which the material is assigned. The LTHSP is similarly determined except that the determination is based on pressure versus time data that are derived from a particular product. The categorized value of the LTHSP is the PDB. An HDB/PDB is one of a series of preferred long-term strength values. This test method is applicable to all known types of thermoplastic pipe materials and thermoplastic piping products. It is also applicable for any practical temperature and medium that yields stress-rupture data that exhibit an essentially straight-line relationship when plotted on log stress (pound-force per square inch) or log pressure (pound-force per square in. gage) versus log time-to-fail (hours) coordinates, and for which this straightline relationship is expected to continue uninterrupted through at least 100 000 h. 1.2 Unless the experimentally obtained data approximate a straight line, when calculated using log-log coordinates, it is not possible to assign an HDB/PDB to the material. Data that exhibit high scatter or a “knee” (a downward shift, resulting in a subsequently steeper stress-rupture slope than indicated by the earlier data) but which meet the requirements of this test method tend to give a lower forecast of LTHS/LTHSP. In the case of data that exhibit excessive scatter or a pronounced “knee,” the lower confidence limit requirements of this test method are not met and the data are classified as unsuitable for analysis. 1.3 A fundamental premise of this test method is that when the experimental data define a straight-line relationship in accordance with this test method’s requirements, this straight line may be assumed to continue beyond the experimental period, through at least 100 000 h (the time intercept at which the material’s LTHS/LTHSP is determined). In the case of polyethylene piping materials, this test method includes a supplemental requirement for the “validating” of this assumption. No such validation requirements are included for other materials (see Note 1). Therefore, in all these other cases, it is up to the user of this test method to determine based on outside information whether this test method is satisfactory for the forecasting of a material’s LTHS/LTHSP for each particular combination of internal/external environments and temperature. NOTE 1—Extensive long-term data that have been obtained on commercial pressure pipe grades of polyvinyl chloride (PVC), polybutylene (PB), and cross linked polyethylene (PEX) materials have shown that this assumption is appropriate for the establishing of HDB’s for these materials for water and for ambient temperatures. Refer to Note 2 and Appendix X1 for additional information. 1.4 The experimental procedure to obtain individual data points shall be as described in Test Method D1598, which forms a part of this test method. When any part of this test 1 This test method is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.40 on Test Methods. Current edition approved March 15, 2022. Published April 2022. Originally approved in 1969. Last previous edition approved in 2021 as D2837 – 21. DOI: 10.1520/D2837-22. *A Summary of Changes section appears at the end of this standard Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 1 method is not in agreement with Test Method D1598, the provisions of this test method shall prevail. 1.5 General references are included at the end of this test method. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only and are not considered the standard. NOTE 2—Over 3000 sets of data, obtained with thermoplastic pipe and piping assemblies tested with water, natural gas, and compressed air, have been analyzed by the Plastic Pipe Institute’s (PPI) Hydrostatic Stress Board2 . None of the currently commercially offered compounds included in PPI TR-4, “PPI Listing of Hydrostatic Design Basis (HDB), Hydrostatic Design Stress (HDS), Strength Design Basis (SDB), Pressure Design Basis (PDB) and Minimum Required Strength (MRS) Ratings for Thermoplastic Piping Materials or Pipe” exhibit knee-type plots at the listed temperature, that is, deviate from a straight line in such a manner that a marked drop occurs in stress at some time when plotted on equiscalar log-log coordinates. Ambient temperature stress-rupture data that have been obtained on a number of the listed materials and that extend for test periods over 120 000 h give no indication of “knees.” However, stress-rupture data which have been obtained on some thermoplastic compounds that are not suitable or recommended for piping compounds have been found to exhibit a downward trend at 23 °C (73 °F) in which the departure from linearity appears prior to this test method’s minimum testing period of 10 000 h. In these cases, very low results are obtained or the data are found unsuitable for extrapolation when they are analyzed by this test method. Extensive evaluation of stress-rupture data by PPI and others has also indicated that in the case of some materials and under certain test conditions, generally at higher test temperatures, a departure from linearity, or “down-turn”, may occur beyond this test method’s minimum required data collection period of 10 000 h. A PPI study has shown that in the case of polyethylene piping materials that are projected to exhibit a “down-turn” prior to 100 000 h at 73 °F, the long-term field performance of these materials is prone to more problems than in the case of materials which have a projected “down-turn” that lies beyond the 100 000-h intercept. In response to these observations, a supplemental “validation” requirement for PE materials has been added to this test method in 1988. This requirement is designed to reject the use of this test method for the estimating of the long-term strength of any PE material for which supplemental elevated temperature testing fails to validate this test method’s inherent assumption of continuing straight-line stress-rupture behavior through at least 100 000 h at 23 °C (73 °F). When applying this test method to other materials, appropriate consideration should be given to the possibility that for the particular grade of material under evaluation and for the specific conditions of testing, particularly, when higher test temperatures and aggressive environments are involved, there may occur a substantial “down-turn” at some point beyond the data collection period. The ignoring of this possibility may lead to an overstatement by this test method of a material’s actual LTHS/LTHSP. To obtain sufficient assurance that this test method’s inherent assumption of continuing linearity through at least 100 000 h is appropriate, the user should consult and consider information outside this test method, including very long-term testing or extensive field experience with similar materials. In cases for which there is insufficient assurance of the continuance of the straight-line behavior that is defined by the experimental data, the use of other test methods for the forecasting of long-term strength should be considered (see Appendix X1). 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products

ICS
83.140.30
CCS
发布
2022-03-15
实施

5.1 颜色 5.1.1 聚砜材质的管件本体一般为黑色。 5.1.2 铜合金材质的管件本体一般为铜本色。 5.1.3 加强环一般为本色。 5.2 外观 5.2.1 聚砜材质管件本体,应无水花,分型面应无毛刺、色斑、凹陷及其他影响性能的缺陷。 5.2.2 铜合金材质管件本体,应无裂痕、气孔、气泡、杂质、砂眼及其他影响性能的缺陷。 5.2.3 螺纹应完好、规整,无断扣、压伤、毛刺、划伤等缺陷。 5.2.4 加强环应光滑、平整、干净,无明显划痕、凹陷、气泡、杂质、色差及其他影响性能的缺陷。 5.3 尺寸规格 5.3.1 管件本体尺寸 5.3.1.1 管件本体示意图见图1。 5.3.1.2 聚砜材质管件本体插口尺寸应符合表2的规定。 5.3.1.3 聚砜材质管件本体插口尺寸偏差应符合表3的要求。 5.3.1.4 聚砜材质管件本体模具偏差造成的飞边和错位,见图2。 5.3.1.5 铜材质管件本体插口尺寸应符合表4的规定。 5.3.1.6 铜材质管件本体插口尺寸偏差应符合表5的要求。 5.3.2 加强环尺寸 5.3.2.1 加强环示意图见图3。 5.3.2.2 加强环尺寸应符合表6的规定。 5.4 管件本体性能 5.4.1 聚砜材质管件本体静液压强度 聚砜材质管件本体静液压强度应符合表7的规定。 5.4.2 铜材质管件本体气密性 铜材质管件本体进行气密性测试,试验中应无气泡产生。 5.5 加强环性能 5.5.1 加强环材料稳定性 加强环材料稳定性,由加强环材料制成管材后进行测试。加强环材料稳定性应符合表8的规定。 5.5.2 加强环物理性能 加强环物理性能应符合表9的规定。 5.6 卫生性能 用于输送饮用水的管件应符合GB/T 17219的规定。

Cold expansion fittings with reinforced rings for cross-linked polyethylene (PE-X) pipes

ICS
83.140.30
CCS
C292
发布
2022-03-07
实施
2022-06-17

8.1 颜色 管材颜色一般为本色,其他颜色可由供需双方协商确定。对于阻隔性管材,阻隔层和粘合剂的颜色宜与 PE-X 材料有明显区分。阻隔层和粘接层如添加色母,不应影响阻隔层和粘合剂层性能。 8.2 外观 管材表面颜色应均匀一致,不应有明显色差。管材的内外表面应光滑、平整、清洁,不应有明显划痕、凹陷、气泡、杂质以及其他影响产品性能的表面缺陷。管材端面应切割平整,并与轴线垂直。 8.3 规格及尺寸 8.3.1 管材规格用管系列S、公称外径dn×公称壁厚en表示。 示例: 管系列S5、公称外径32 mm、公称壁厚为2.9 mm 表示为:S5 dn 32 × en 2.9 8.3.2 管材的公称外径、平均外径以及管系列S对应的公称壁厚(不包括阻隔性管材的阻隔层和粘合剂层厚度)见表3。 8.3.3 管材(任一点)壁厚ey应符合表4的偏差要求。 8.3.4 直管长度一般为4 m或6 m,盘管长度一般为100 m、200 m或300 m,也可由供需双方协商确定。管材长度不应有负偏差。 盘管的最小盘卷内径不宜小于18dn,且不宜小于360 mm。 8.4 静液压强度 管材的静液压强度应符合表5的规定。 8.5 物理和化学性能 管材的物理和化学性能应符合表6的规定。 8.6 卫生性能 用于输送饮用水的管材应符合GB/T 17219的规定。

Cross-linked polyethylene (PE-X) pipes for hot and cold water installation

ICS
83.140.30
CCS
C292
发布
2022-03-07
实施
2022-06-16

1  范围 本文件规定了以112级聚乙烯混配料为原料,经挤出成型的给水用聚乙烯管材(以下简称“管材”)的术语和定义、符号、缩略语、材料、产品分类、要求、试验方法、检验规则、标志、包装、运输、贮存。 本文件适用于水温不大于40 ℃,最大工作压力(MOP)不大于2.0 MPa,一般用途的压力输水和饮用水输配的聚乙烯管道系统及其组件。 本文件适用于PE 112混配料制造的公称外径为16 mm~2 500 mm的给水用聚乙烯管材。 2  规范性引用文件 3  术语和定义、符号、缩略语 4  材料 5  产品分类 6  要求 7  试验方法 8  检验规则 9  标志 10  包装、运输、贮存 附录A(资料性)  工作温度下的压力折减系数 附录B(规范性)  带可剥离层的管材 附录C(资料性)  高耐慢速裂纹增长性能PE 112混配料和管材 附录D(资料性)  PN、MRS、S和SDR的关系 附录E(规范性)  PE 112管材耐慢速裂纹开裂的试验压力

112 grade polyethylene pipe for water supply

ICS
83.140.30
CCS
C292
发布
2022-01-30
实施
2022-01-30

This document specifies the characteristics of valves made from unplasticized polyamide (PA-U) in accordance with ISO 16486-1, intended to be buried and used for the supply of gaseous fuels. It is applicable to isolating unidirectional and bi-directional valves with spigot ends or electrofusion sockets intended to be fused with PA-U pipes or fittings conforming to ISO 16486-2 and ISO 16486-3 respectively. Valves made from material other than unplasticized polyamide designed for the supply of gaseous fuels conforming to the relevant standards are permitted to be used in PA-U piping systems according to the (see ISO 16486-3). The component, i.e. the complete valve, is required to fulfil the requirements of this document. This document also specifies the test parameters for the test methods it describes. In conjunction with ISO 16486-1, ISO 16486-2, ISO 16486-3 and ISO 16486-5, this document is applicable to PA-U valves and their joints and to joints with components of PA-U and other materials intended to be used under the following conditions: a) a maximum operating pressure (MOP) of up to and including 18 bar3), or limited to 16 bar under regional CEN requirements, at a reference temperature of 20 °C for design purposes; NOTE 1 For the purpose of this document and the references to ISO 8233, MOP is considered to be nominal pressure. b) an operating temperature of −20 °C to 40 °C; NOTE 2 For operating temperatures between 20 °C and 40 °C, derating coefficients are specified in This document covers valves for pipes with a nominal outside diameter, dn, ≤ 400 mm.

Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing — Part 4: Valves

ICS
83.140.30
CCS
发布
2022-01-14
实施

材料、管材分级和标记、管材结构型式和连接方式、颜色、外观、规格尺寸、管材的物理力学性能、系统适用性

PP moment circle reinforced polyethylene winding corrugated pipe for buried drainage and sewage

ICS
83.140.30
CCS
C292
发布
2022-01-07
实施
2022-01-07

5技术要求 5.1 原材料要求 MPVC双壁波纹管生产所用的材料应以聚氯乙烯为主,其中可加入为提高管材加工性能和物理力学性能的添加剂。经MBS高抗冲改性的聚氯乙烯不得加入增塑剂,填料的含量不超过5%。 5.2   产品要求 5.2.1  颜色、外观、尺寸 5.2.1.1  颜色 管材颜色一般为橘红色,其它颜色由供需双方协商确定,色泽应均匀一致。 5.2.1.2  外观 PVC-M双壁波纹管内外壁不应有气泡、裂口、明显的杂质、 分解变色线、不规则的波纹,内壁应光滑平整。 5.2.1.3  尺寸 规格尺寸及偏差符合表 1 的规定,长度一般为6.2m,也可以供需双方的商定。长度不应有负偏差。 5.2.2  技术性能 5.2.2.1  MPVC双壁波纹管的物理力学性能符合表2规定。 表2  MPVC双壁波纹管的物理力学性能 项 目 单位 技术指标 试验方法 密度 kg/m3 ≤1500 6.3 维卡软化温度 ℃ ≥80 6.4 烘箱试验 - 无分层、无裂纹 6.5 扁平试验 - 试样不应出现破裂、分层或起皮 6.6 环刚度 SN24 kN/m2 ≥24 6.7  SN32  ≥32   SN40  ≥40  环段热压缩力 SN24 kN ≥0.35 6.8  SN32  ≥0.5   SN40  ≥0.75  落锤冲击试验 - 10/10通过 6.9 阻燃等级 - V-0,无滴落。 6.10 体积电阻率  Ω?m ≥1×1011 6.11 静摩擦系数 - ≤0.35 6.12 连接密封性 - 0.01MPa 水压,在 20℃下保持 30min,接头处不应渗水,漏水 6.13 6  试验方法 6.1 试样的制备、数量要求、状态调节和实验的标准环境 应符合DL/T 802.1-2007中“6试样、试验环境条件和试验方法”规定的制样方法及状态调节与实验室的标准环境。 6.2  外观、尺寸测量 6.2.1  外观 目测管材的内、外表面和端面。 6.2.2  平均内径 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 6.2.3  平均外径 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 6.2.4  最小内层壁厚 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 6.2.5  最小层压壁厚 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 6.2.6  管材长度 按GB/T 8806的规定,用精度为1mm的钢卷尺测量。 6.3  密度 按GB/T 1033.1中A法规定进行。 6.4  维卡软化温度 按GB/T8802规定进行。 6.5  烘箱试验 按DL/T 802.4-2007 中5.6规定进行。 6.6  扁平试验 按GB/T 9647的规定进行,从三根管材上各取(200±5)mm的管段为试样,试样两端应垂直切平,试验速度为(10±2)mm/min,当垂直方向为外径变形量的50%时,立即卸荷。 6.7  环刚度 按GB/T 9647的规定进行试验。在试验温度(23±2)℃条件下,5分钟内完成测定。 6.8  环段热压缩力 按GB/T 9647的规定进行试验,试样长度为(300±10)mm放入电热鼓风箱内,经(70±2)℃处理1h时后,从干燥箱箱内取出试样,立即放在压缩试验机上进行试验。读取内径压缩3%时的力值为环段热压缩力。每段试样从烘箱取出至试验完成均应控制在2min内。取三个试样的试验结果的算术平均值为试验结果。 6.9  落锤冲击试验 取长度为(200±10)的试样10段,置于(0±1)℃的水浴或空气浴中进行状态调节2h。状态调节后,应从空气浴中取出10S内或从水浴中取出20s内完成试验,试验环境为(23±2)℃。每个试 样冲击一次,10个中10个均不出现破裂、裂纹为合格。落锤冲击试验的冲击锤头质量、半径与高度及温度条件见表3。 表3   MPVC双壁波纹管落锤冲击试验 公称内径/mm 落锤质量(偏差±1.0%)/kg 落锤高度(偏差±20)/mm 100 3.2 2000 150 5  175 7.5  200   注1:试验前试样在0℃下放置2h。 2:落锤头直径为90mm。 6.10  阻燃等级 按GB/T 2408-2008 中9 试验方法B-垂直燃烧试验测定。 6.11  体积电阻率 按GB/T 31838.2 的规定进行。 6.12  静摩擦系数 按YD/T 841.1-2016附录A平板法测定静摩擦系数试验方法进行试验。 6.13  连接密封试验 按DL/T 802. 4-2007中5.10试验方法进行试验。

Modified polyvinyl chloride (MPVC) double-wall corrugated pipe for power and communication cable protection

ICS
83.140.30
CCS
C291
发布
2022-01-05
实施
2022-03-10

 要求  5.1 外观   应为微细粉末,颜色均一,无结块。 5.2化学成分      产品的基本要求应符合表1的规定。 表1 项        目 要求  200目 800目 1200目 细度(D90a) 75μm 18μm 12μm 硫酸钙含量/%,                   ≥ 80 水分/%,                         ≤ 2.0 水溶性五氧化二磷(P2O5)/%,      ≤ 0.5 水溶性氟离子(F-)/%,           ≤ 0.4 水溶性氧化镁/%,                ≤ 0.5 吸油值b/(g/100g),            ≤ 40 氯离子含量/%,                  ≤ 0.04 注:aD90表示90%以上粉体粒径小于该型粒径要求。 b吸油值仅在将改性无水磷石膏用作聚氯乙烯填料时要求。 5.3 放射性核素限量 应符合GB 6566的要求。 6  试验方法 6.1  外观  目视检查。 6.2  细度     按照GB/T 19077-2016的要求进行测定,90%以上的粉体粒径小于该型粒径要求。 6.3 硫酸钙(CaSO4)含量              按GB/T 5484-2012的第11章测定SO3含量,并按该标准中式(21)计算SO3含量,然后按式(1)计算硫酸钙(CaSO4)含量:        WCaSO4 = WSO3×1.70 .......................................(1)                                          WCaSO4——硫酸钙(CaSO4)的质量分数; WSO3——三氧化硫(SO3)的质量分数; 1.70——SO3质量分数换算为CaSO4质量分数的系数。 5.4 水分(H2O)含量              按GB/T 5484-2012的第10章进行。 5.5 水溶性五氧化二磷(P2O5)    按JC/T 2073进行。 5.6 水溶性氟离子(F-)    按JC/T 2073进行。 5.7 水溶性氧化镁(MgO)    按GB/T 5484-2012第27章进行。 5.8 吸油值    按GB/T 19281中规定的方法进行。 5.9 氯离子(Cl-) 按GB/T 5484-2012的第29章进行。 5.10 放射性    按GB 6566进行。

PVC (modified anhydrous phosphogypsum) W-type drainage pipe

ICS
83.140.30
CCS
C292
发布
2022-01-05
实施
2022-01-11

6要求 6.1颜色 颜色宜采用绿色,管材颜色应均匀一致。如有特殊颜色要求,则由供需双方协商确定。 6.2外观 管材内外壁应光滑,不允许有气泡、裂纹、凹陷及分解变色线。管材端部应切割平整并应与轴线垂直。 6.3规格尺寸 6.3.1长度 管材长度一般为4m、6m、9m或12m,如有特殊要求,由供需双方协商确定。管材长度见图1。不允许有负偏差。 说明: L——管材长度; L1——有效长度; dn——公称外径。 图1 管材长度 6.3.2平均外径 平均外径dem应符合表3的规定。 表3 平均外径与壁厚  公称外径 dn, mm  平均外径dem, mm 壁厚,mm   SN2  SN4  SN8  SN12.5  SN16   min.  max. e min. em max. e min. em max. e min. em max. e min. em max. e min. em max. 110 110.0 110.3 — — 3.2 3.8 3.2 3.8 4.0 4.6 4.2 4.9 125 125.0 125.3 — — 3.2 3.8 3.7 4.3 4.5 5.2 4.8 5.5 160 160.0 160.4 3.2 3.8 4.0 4.6 4.7 5.4 5.8 6.6 6.2 7.1 200 200.0 200.5 3.9 4.5 4.9 5.6 5.9 6.7 7.2 8.2 7.7 8.7 250 250.0 250.5 4.9 5.6 6.2 7.1 7.3 8.3 9.0 10.1 9.6 10.8 315 315.0 315.6 6.2 7.1 7.7 8.7 9.2 10.4 11.3 12.7 12.1 13.6 (355)a 355.0 355.7 7.0 7.9 8.7 9.8 10.4 11.7 12.7 14.2 13.6 15.2 表 3 平均外径与壁厚(续)  公称外径 dn, mm  平均外径dem, mm 壁厚,mm   SN2 SN4 SN8 SN12.5 SN16   min.  max. e min. em max. e min. em max. e min. em max. e min. em max. e min. em max. 400 400.0 400.7 7.9 8.9 9.8 11.0 11.7 13.1 14.3 16.0 15.3 17.1 (450)a 450.0 450.8 8.8 9.9 11.0 12.3 13.2 14.8 16.1 18.0 17.2 19.2 500 500.0 500.9 9.8 11.0 12.3 13.8 14.6 16.3 17.9 19.9 19.1 21.3 630 630.0 631.1 12.3 13.8 15.4 17.2 18.4 20.5 22.5 25.0 24.1 26.8 (710)a 710.0 711.2 13.9 15.5 17.4 19.4 20.9 23.3 25.4 28.2 27.2 30.2 800 800.0 801.3 15.7 17.5 19.6 21.8 23.5 26.2 28.6 31.7 30.6 33.9 (900)a 900.0 901.5 17.6 19.6 22.0 24.4 26.5 29.5 32.2 35.7 34.4 38.1 1000 1000.0 1001.6 19.6 21.8 24.5 27.2 29.5 32.8 35.8 39.6 38.2 42.3 1200 1200.0 1202.0 23.5 26.2 29.4 32.6 35.3 39.3 42.9 47.4 45.9 50.6 1400 1400.0 1402.2 27.4 30.4 34.3 38.0 41.2 45.6 — — — — 1600 1600.0 1602.5 31.3 34.7 39.2 43.4 — — — — — — a公称外径加括号的为非优选尺寸; 6.3.3不圆度 不圆度在生产后立即测量,应不大于0.024dn。 6.3.4倒角 管材插口端应按图2加工倒角,倒角应与管材轴线呈(15~45)°之间的夹角,见图2、表5。管材端部剩余壁厚应不小于最小壁厚的三分之一。 6.3.5壁厚 管材壁厚应符合表3的规定,承口壁厚应符合表5的规定。 6.3.6承口和插口尺寸 6.3.6.1承口内径和长度 承口应采用一体成型的钢骨架密封圈承口结构,管材的承口和插口示意图见图2,承口和插口的基本尺寸应符合表4的规定,插口端应设置安装指导线。 ds—管材承口内径 de—管材外径 e—管材壁厚 e2—承口处壁厚A—承口配合深度  C—密封区长度  H—倒角宽度  E—插入深度 图2 承口和插口示意图 表4 承口和插口的基本尺寸 单位:㎜ 公称外径,dn 承口 插口  dsm, min. A, min. E, b min. H 110 110.4 32 60 6 125 125.4 35 67 6 160 160.5 42 81 7 200 200.6 50 99 9 250 250.8 55 125 9 315 316.0 62 132 12 (355)a 356.1 66 136 13 400 401.2 70 150 15 (450)a 451.4 75 155 17 500 501.5 80 160 18 630 631.9 93 188 23 (710)a 712.1 101 210 28 800 802.4 110 220 32 (900)a 902.7 120 245 36 1000 1003.3 130 270 41 1200 1203.6 140 285 46 1400 1403.9 160 320 51 1600 1604.2 180 360 56 a 括号内为非优选尺寸; bE 表示管材实际插入深度,Emin  =Amin+C。 6.3.6.2承口壁厚 承口壁厚见图2,不包括承口口部,应符合表7的规定。由于型芯偏移,允许承口壁厚减少5%。在这种情况下,垂直相对两点壁厚的平均值等于或大于表5中的规定。 表5 承口壁厚 单位:㎜ 公称外径a dn 承口壁厚 e2,min  SN2 SN4 SN8 SN12.5 SN16 110 — 2.9 2.9 3.6 3.8 125 — 2.9 3.4 4.1 4.4 160 2.9 3.6 4.3 5.3 5.6 200 3.6 4.4 5.4 6.5 6.9 250 4.5 5.5 6.6 8.1 8.6 315 5.6 6.9 8.3 10.2 10.9 (355)a 6.3 7.8 9.4 11.5 12.3 400 7.1 8.8 10.6 12.9 13.7 (450)a 8.0 9.9 11.9 14.5 15.5 500 8.9 11.1 13.2 16.2 17.8 630 11.1 13.9 16.6 20.3 21.8 (710)a 12.6 15.7 19.0 23.0 24.7 800 14.1 17.7 21.3 26.0 27.8 (900)a 16.0 19.8 24.0 29.3 31.3 1000 17.8 22.0 26.8 32.6 34.7 1200 21.4 26.6 32.1 39.0 41.7 1400 24.9 30.8 37.4 — — 1600 28.4 35.2 — — — a公称外径加括号的为非优选尺寸。 6.4物理力学性能 管材的物理力学性能应符合表6的规定。 表6 管材的物理力学性能 项目 要求 试验方法 密度kg/m3 1350~1750 见 7.4 环刚度,kN/㎡ SN2 ≥2  见 7.5  SN4 ≥4   SN8 ≥8   SN12.5 ≥12.5   SN16 ≥16  落锤冲击 (TIR),% ≤10 见 7.6 维卡软化温度,℃ ≥79 见 7.7 纵向回缩率,% ≤5,管材表面应无气泡和裂纹 见 7.8 二氯甲烷浸渍试验(15℃,30min) 表面无变化 见 7.9 压扁试验 无破裂 见 7.11 注:二氯甲烷浸渍试验可采用丙酮浸渍试验(23℃,20min)代替,要求内外表面无凸起,无剥离,试验方法见 7.10。 6.5连接密封性 管材应进行连接密封性试验,试验后试样应不破裂,不渗漏。 6.6铅含量 管材中铅含量应符合GB/T 26125-2011的规定。 7试验方法 7.1试样状态调节及试验环境 除有特别规定外,应按GB/T 2918-2018规定,在(23±2)℃条件下对试样进行状态调节24h,并在同样条件下进行试验。 7.2外观和颜色 目测。 7.3尺寸和测量工具 7.3.1长度 按图1所示测量,精度为1mm。 7.3.2平均外径 按GB/T 8806-2008规定测量。 7.3.3不圆度 按GB/T 8806-2008规定测量同一截面的最大外径和最小外径,用最大外径减最小外径为不圆度。 7.3.4壁厚 按GB/T 8806-2008的规定测量。 7.3.5承口和插口基本尺寸 按GB/T 8806-2008的规定测量。承口内径用精度为0.01mm的内径尺为主测量,承口深度用精度为0.02mm的游标卡尺测量。 7.4   密度 按GB/T 1033.1-2008测定。 7.5  环刚度试验 按GB/T 9647-2015规定进行。 7.6  落锤冲击 按GB/T 14152-2001的规定测试,预处理和试验温度为0℃,状态调节介质为水或空气,使用d90型重锤, 重锤质量和冲击高度见表7。 表7 冲锤冲击试验条件 公称外径dn,㎜ 重锤质量,㎏ 冲击高度,㎜ 110 1.0 1600 125 1.25 2000 160 1.6 2000 200 2.0 2000 250 2.5 2000 ≥315 3.2 2000 7.7  维卡软化温度 按GB/T 8802-2001规定测试。 7.8  纵向回缩率 按GB/T 6671-2001的方法B的规定测试,试验温度为(150±2)℃,试验时间见表8。 表8纵向回缩率试验条件 壁厚e,mm 烘箱处理时间,min e≤4 30 4<e≤16 60 e>16 120 7.9   二氯甲烷浸渍 按GB/T 13526-2007的规定测试。 7.10  丙酮浸渍试验 根据CJ/T 493-2016中7.2.8的规定测定。 7.11  压扁试验 按GB/T  9647-2015的规定测试。将试样压至管材外径的30%,观察试样是否破裂,加压速率应均匀,压缩过程应在(2~5)min内完成。 7.12  连接密封性 管材承插连接后应进行连接密封性能试验,按表9的试验条件进行测试。 表9 连接密封性能试验条件 项目 试验参数 要求 试验方法 连接密封性试验 试验温度 20℃  不破裂不渗漏  按GB/T 20221-2006 附录A 中方法 4,条件B   试验时间 1h    试验压力 0.05MPa   存在径向变形的连接密封性试验 试验温度 (23±5)℃  —  按GB/T 20221-2006 附录A 中方法 4,条件B   插口形变 ≥10%    承口形变 ≥5%    偏差 ≥5%    水压 0.005MPa 无渗漏   水压 0.05MPa 无渗漏   气压 -0.03MPa p≤-0.027MPa  存在角度偏差的连接密封性试验 试验温度 (23±5)℃  —  按GB/T 20221-2006 附录A 中方法 4,条件C    形变角度 dn≤315 ㎜ 2°     315 ㎜<dn≤630 ㎜ 1.5°     dn>630 ㎜ 1°    水压 0.005MPa 无渗漏   水压 0.05MPa 无渗漏   气压 -0.03MPa p≤-0.027MPa  7.13  铅含量 按GB/T 26125-2011的规定测定。

Phosphogypsum modified rigid polyvinyl chloride drainage and sewage pipe

ICS
83.140.30
CCS
C292
发布
2022-01-05
实施
2022-03-10



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号