电感耦合等离子体质谱法测定三元正极材料的组成

黄艳,胡静,周波

中国科学院地球化学研究所,矿床地球化学国家重点实验室,贵阳 550081

摘 要:镍钴锰三元正极材料主要由Li、Mn、Co、Ni元素组成,并含有微量的杂质元素 Na、Mg、Al、Ca、Fe、Cu等,准确高效地测定三元正极材料中这些元素的含量具有重要的工业意义。但传统的测试方法操作繁琐,且难以实现高含量和微量的多元素同步测定。本文利用 Plasma Quant MS Elite型 ICP-MS,研究了集成碰撞反应池(iCRC)优化、RF 射频功率和离子透镜电压等工作参数,并在同一个测试方法中编辑三个测试模式,实现了用 HF-HNO₃体系-电感耦合等离子体质谱法一次进样、同时测定主要元素和微量杂质元素的含量。本文测试了研究材料中高含量的Li、Mn、Co、Ni和微量的Na、Mg、Al、Ca、Fe、Cu含量,结果显示,各元素标准曲线线性关系良好,相关系数均大于0.9990,检出限为0.01~5.03 μg/g,加标回收率为90%~112%,RSD<3%。该方法操作简便、快速、检出限低、准确度高、精确度好。

关键 词:三元正极材料;元素组成; ICP-MS; iCRC 优化

中图分类号:P599 文章编号:1007-2802(2020)05-1044-06 doi:10.19658/j.issn.1007-2802.2020.39.074

Inductively Coupled Plasma Mass Spectrometry for the Determination of Elemental Composition in Ternary Cathode Materials

HUANG Yan, HU Jing, ZHOU Bo

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Abstract: The accurate and highly effective analysis of elemental composition of the nickel-cobalt-manganese ternary cathode materials in a single measurement has a very important industrial significance. However, multi-element analysis from trace to major levels could not be simultaneously analyzed in a single measurement by using traditional analytical methods due to their tedious operation procedures. In this paper, by using the Plasma Quant MS Elite ICP-MS instrument, we have studied parameters of iCRC optimization, RF power and ion lens voltage, edited three kinds of analytical modes in a single testing method, and effectively developed a new method for simultaneously analyzing trace elements (Na, Mg, Al, Ca, Fe, Cu) and major elements (Li, Mn, Co, Ni) of the nickel-cobalt-manganese ternary cathode materials in a single measurement by using the combined inductively coupled plasma mass spectrometry with hydrofluoric acid-nitric acid dissolving system. The experimental results by using this method show the good linear relationships of standard curves for each elements, with the correlation coefficients of over 0. 9990, the detection limits of 0.01–5.03 μ g/g for various elements, the recoveries of about 90% –112% for various elements, and the RSD of less than 3%. Thus, the method has advantages of simple and rapid operation, low detection limit, high accuracy, and good precision.

Key words: ternary cathode material; elemental composition; ICP-MS; iCRC optimization

0 引言

镍钴锰三元正极材料因具有成本低、循环性能 好、安全性好等优点,在动力电池市场的份额逐年 增大(钟胜奎等,2009)。镍钴锰三元正极材料由高 含量的主要组成元素(Li、Ni、Co、Mn)和低(微)含量 的掺杂元素和有害杂质元素(Na、Mg、Al、Ca、Fe、Cu 等)组成,这些元素含量对材料的晶体结构、表面形

收稿编号:2020-051,2020-04-17收到,2020-05-08改回

基金项目:贵州省科学技术基金资助项目(黔科合J字[2011]2081号)

第一作者简介:黄艳(1979-),女,硕士,高级工程师,研究方向:矿床地球化学. E-mail:huangyan@mail.gyig.ac.cn.

貌和电池容量都有很大影响(刘纪迎等,2015;高鹏 和欧阳志勇,2018)。一方面,高含量的主要元素 Ni、Co、Mn可以以任意比例配比,得到一系列(333、 424、523、622、811 型等)性能不同的镍钴锰三元正 极材料。有研究表明(Park et al., 2007; Yang et al., 2012; Nayak et al., 2014; Ye et al., 2015; 陈鹏 等,2016;Zhu et al.,2017),Ni 提供氧化还原反应所 需的电子,是活性物质之一,可以提高材料的比容 量和循环性能;Co能有效地抑制"阳离子混排",能 提高材料的放电容量和稳定性; Mn 有良好的电化 学惰性,能够保持材料的稳定结构。但是,配比相 对过量的 Ni、Co 和 Mn 都会导致首次放电比容量下 降(韦屹,2015)。另一方面,除了特意引入的掺杂 元素(李建刚等,2004),其有害杂质元素含量越低 越好,需要在源头加以控制。因此,准确且高效地 测定镍钴锰三元正极材料及其原材料金属氧化物 前驱体中的主要组成元素和低微含量杂质元素的 含量,具有重要的工业意义。

传统的测定方法主要有:滴定及重量法、原子 吸收光谱(AAS)法、原子荧光光谱(AFS)法、电感耦 合等离子体发射光谱(ICP-OES)法等(钟胜奎等, 2009;徐金玲,2013;于晓微等,2014;朱玉巧,2018; 黄龙等,2019)。其中,滴定及重量法操作繁琐,不 适用于低含量的杂质元素测试;AAS 法和 AFS 法, 不适合多元素同时测试;ICP-OES 法也不适合低含 量元素的测试(黄瑞鸿等,2018;郎荣树等,2019)。

本文研究的一系列镍钴锰三元正极材料及其 原材料金属氧化物前驱体中,低(微)含量的元素 (Na、Mg、Al、Ca、Fe、Cu)和高含量的元素(Li、Mn、 Co、Ni)的相对含量相差大。根据企业质量控制标 准《钴镍锰三元正极材料 ZH5000BDA》的要求,主 要组成元素的含量为:Li为 6.3%~7.7%,Co为 19.7%~42.3%,Ni为 12.0%~30.0%,Mn为 5.5% ~22.0%;微量杂质元素含量为:Na \leq 0.005%,Mg \leq 0.005%,Al \leq 0.005%,Ca \leq 0.007%,Fe \leq 0.003%, Cu \leq 0.005%。二者的含量的量级差别很大,因此传 统的元素含量测定方法不能实现这两类元素含量 的同时测定,通常是采用 ICP-MS 和 ICP-OES 分别 测定,但这一过程相对繁琐(朱乾华,2013;王静, 2016),效率较低。

本文利用 ICP-MS 仪器,在碰撞反应池(iCRC) 和检测器衰减环节,使得目标元素响应信号在正常 测定的范围,并通过 RF 射频功率和离子透镜电压 等参数的优化处理。对镍钴锰三元正极材料及其 原材料金属氧化物前驱体进行一系列筛选测试,以 实现同时测定 Li、Na、Mg、Al、Ca、Mn、Fe、Co、Ni、Cu 元素,简化实验流程、缩短检测时间。该实验可为 企业在原料管控、优化生产工艺和稳定产品质量各 方面,提供新的测试技术支撑。

1 实验部分

1.1 仪器与试剂

德国耶拿公司的 Plasma Quant MS Elite 型 ICP-MS 噪音低、灵敏度超高[¹¹⁵In >1.5×10⁶ cps/(μg/ L)],配备了全数字检测系统和集成的碰撞反应池 (iCRC),每个元素根据其含量范围可以选择自动衰 减、中衰减(约50倍)和高衰减(约2500倍)模式。 因此,动态范围宽(10个数量级),可以实现从超微 量元素到主量元素一次进样同时测定。

50 mg/L 的 Na、Mg、Al、Ca、Fe、Cu 多元素混合标准溶液 1(混标 1),1000 mg/L 的 Li、Mn、Co、Ni 多元素混合标准溶液 2(混标 2),1000 mg/LRh 内标溶液,均购自北京坛墨质检科技有限公司。

取适量 1000 mg/LRh 内标溶液,配置成 500 μ g/L Rh,介质为 2% HNO₃ 的内标溶液。准确取适 量的混标 1 和混标 2 于容量瓶中,准确加入 1 mL 500 ng/mL Rh 内标溶液和 2 mL HNO₃,定容 100 mL,摇匀。配制成 0~100 μ g/L Na、Mg、Al、Ca、Fe、 Cu 和 0~10 mg/L Li、Mn、Co、Ni 的标准曲线系列。 另外,配制 1 μ g/L 和 50 μ g/L Li、Na、Mg、Al、Ca、 Mn、Fe、Co、Ni、Cu、Rh 的标准溶液,用于检测器衰减 调试。

所用试剂均为优级纯,硝酸、氢氟酸均经过二 次蒸馏提纯。超纯水经过 Mili-Q 装置处理,电阻率 为 18.2 MΩ·cm。

1.2 消解实验

HF-HNO₃ 有较强的消解能力,同时又能抑制水 解反应的发生,故本实验选择 HF-HNO₃ 作为消解体 系。实验结果表明,样品消解完全,消解液澄清透 明(漆亮和胡静,2000;马生凤等,2016)。

取 0.010 0 g 样品于聚四氟乙烯坩埚中,加入 0.5 mL HF 和 1 mL HNO₃,将坩埚放入钢套中加盖 密封,放入已升温至 180 ℃ 的烘箱中,加热 2 h 以 上。冷却后取出,在低温电热板上蒸干。冷却后加 入 1 mL HNO₃ 再蒸干。冷却后准确加入 1 mL 500 µg/L Rh 内标溶液、2 mL HNO₃ 和 2 mL 超纯水,140 ℃封闭溶解 2 h。冷却后将溶液转移并定容 100 mL,待测。样品空白与样品同样处理。

1.3 仪器优化和检测器衰减调谐

优化仪器时,仪器稳定性最佳匹配。扫描1

μg/L的 Ba、Be、Ce、Co、In、Mg、Pb、Th、Tl 调谐液。 灵敏度要求:Be>5×10⁴ cps,In>2.5×10⁵ cps,Th>1.0 ×10⁵ cps;m/z=5 背景强度要求小于 1c/s;氧化物 CeO/Ce<2%;双电荷 Ba⁺⁺/Ba⁺<3%。

检测器衰减调谐时,测试 1 μg/L 和 50 μg/L 的 Li、Na、Mg、Al、Ca、Mn、Fe、Co、Ni、Cu、Rh 的标准溶 液,生成目标元素的衰减校正因子。校正因子和检 测器电压有关,改变检测器电压就必须重新进行检 测器的衰减调谐,而且有必要每个月进行一次衰减 调谐。因此,目标元素的衰减校正因子都是变量。

1.4 iCRC 优化和测试方法编辑

1.4.1 iCRC 优化 采用氦气碰撞反应模式检测, 不仅可以消除多原子分子离子干扰(余兴,2013), 还可以选择性降低目标元素的信号响应值,适用于 测定有严重干扰的低含量元素和高含量元素。

在碰撞反应模式下,氦气大于 120 mL/min,仪 器信噪比大、稳定性较差(巩海娟等,2020)。因此, 在 iCRC 优化实验中,分别设定氦气流量为 20、40、 60、80、100 和 110 mL/min,测试含量为 10 μg/L Na、 Mg、Al、Ca、Fe、Cu 和 1000 μg/L Li、Mn、Co、Ni 的标 准溶液,在每个气流量切换后保持扫描 20 s。

结果表明,随着氦气流量的增大,消除多原子 分子离子干扰的能力逐步提高,目标元素信号响应 值呈现台阶式的降低。为了满足研究样品的测试 需求,Li、Mn、Co 和 Ni 的氦气流量至少 100 mL/ min;Fe 的氦气流量至少 80 mL/min;使用氦气碰撞 模式有利于测定低含量的 Na、Mg、Al、Ca;标准模式 (无碰撞气体)下就可以测定低含量的 Cu。

1.4.2 检测方法编辑 根据 iCRC 优化实验结果, 绘制了五个检测模式下的 25 条标准曲线。碰撞模 式 1 至 4 的氦 气流量分别为 40、80、100 和 110 mL/min,各个目标元素的标准曲线参数见表 1。 根据目标元素的含量、灵敏度和检出限,以及空白 信号响应值,选择对应的最佳测试模式。

根据研究样品中高含量的主要元素(⁷Li、 ⁵⁵Mn、⁵⁹Co、⁶⁰Ni)背景含量值和内标¹⁰³Rh的信号响 应值,选择100 mL/min的氦气流量为最佳值。为了 进一步降低这些主要元素的信号响应值,编辑碰撞 模式3,并对其工作参数再次优化。RF 射频功率调 至1.20 kW,第一级离子透镜电压调至-120 V,并选 择检测器中衰减,信号响应值降低至正常测定范围。

⁵⁶Fe 受到⁴⁰Ar¹⁶O的强烈干扰(余兴,2013), 必须通过仪器自带的干扰校正方程进行校正。 同时,Fe 在研究样品中是低含量的微量元素,经 过 iCRC 优化实验,编辑碰撞模式 4,选择 110 mL/min 的氦气流量,并使用自动校正方程。同时对其工作参数再次优化,RF 射频功率调至 1.20 kW,第一级离子透镜电压调至-200 V,调高信号响应值。

虽然在标准模式下就可以满足⁶⁵Cu 的测试需 求,为了减少一个检测模式,本实验选择检出限更 低的碰撞模式 1。由于研究样品中的²³Na、 ²⁴Mg、²⁷Al、⁴⁴Ca 和⁶⁵Cu 是低含量的微量元素,且不同 批次样品的含量波动相对较大。编辑碰撞模式 1, RF 射频功率降低至 0.80 kW,第一级离子透镜电压 调至-166 V,并且使用 40 mL/min 的氦气流量。提 高了灵敏度、降低了检出限,更加有利于测定研究 样品中这 5 个低含量元素。

本台仪器还有一个优势:可以在同一个测试方 法中同时编辑不同测试参数的多个测试模式。测 试过程中逐个扫描、自动切换碰撞气体并且瞬间完 成,不影响仪器稳定性。本实验在同一个测试方法 中设定了三个测试模式,实现了一次进样,同时测 定研究样品中低含量的微量元素(Na、Mg、Al、Ca、 Fe、Cu)和高含量的主要元素(Li、Mn、Co、Ni)。仪 器的工作参数设置见表2。

2 结果与讨论

2.1 标准曲线和检出限

ICP-MS分析测试中,内标元素能有效的监控和 校正分析信号的短期和长期漂移,对基体效应具有 补偿作用(Thompson and Houk, 1987;赵小学等, 2016)。本实验选择 Rh 作为内标,测定 20 次的流 程空白溶液,以3 倍标准偏差的方法来计算检出限 (中华人民共和国国家质量监督检验检疫总局, 2006;冉敬等,2008;马生凤等,2016)。

测定配制的标准溶液系列,绘制出标准曲线, 结果见表3。标准曲线的线性相关良好,相关系数 r≥0.9990,检出限低(0.01~5.03 µg/g),能够满足 研究样品的检测标准。

2.2 准确度和精确度

为了验证方法的准确度和精确度,本实验对镍 钴锰三元正极材料中编号为 V7626 的样品进行加 标实验。按照 1.2 消解实验中的方法,准备两份同 一样品,一份加标(准确加入 20 μL 混标 1 和 100 μL 混标 2),另一份不加标。各平行测定 10 次,计 算出加标回收率(宋树成和郭如侠,2011;陈银花和 周旻,2016)和相对标准偏差(RSD),结果见表 4。 加标回收率介于 90%~112%,RSD<3%,说明本方 法准确度好、精确度高,完全能满足研究样品中主

元素	参数	标准模式	碰撞模式1	碰撞模式 2	碰撞模式 3	碰撞模式 4
	r				0. 999 9	0.999 9
7	b				7.81×10 ⁻²	1.20×10^{-2}
' Li	SD				2. 71×10^{-3}	3.27×10^{-3}
	DL / (µg/L)		标准模式碰撞模式 1碰撞模式 2碰撞模式 30.999 97.81×10 ⁻² 2.71×10 ⁻³ 0.1042.71×10 ⁻³ 0.1040.999 30.999 0 4.36×10 ⁻² 0.107 7.31×10 ⁻³ 0.101 0.5032.800.999 00.998 9 2.70×10 ⁻² 4.28×10 ⁻² 4.28×10 ⁻² 3.33×10 ⁻⁴ 7.65×10 ⁻³ 0.0370.5360.999 10.999 10.993 9 2.73×10 ⁻² 2.73×10 ⁻² 1.53×10 ⁻³ 0.0372.01×10 ⁻² 2.98×10 ⁻² 0.984 3 1.33×10 ⁻² 0.999 10.996 8 0.2020.984 3 0.999 10.996 8 0.2020.2020.984 3 0.999 10.996 8 0.2021.00×10 ⁻³ 9.08×10 ⁻³ 9.68×10 ⁻³ 9.68×10 ⁻³ 9.68×10 ⁻³ 9.0361.030.2212.801.000 0 7.98×10 ⁻³ 9.68×10 ⁻³ 9.0361.000 0 7.98×10 ⁻³ 9.0360.993 6 1.61×10 ⁻¹ 1.12×10 ³ 1.76×10 ⁻² 0.995 6 1.61×10 ⁻¹ 1.12×10 ³ 1.76×10 ⁻³ 2.26×10 ⁻⁴ 0.0130.999 8 0.999 9 4.76×10 ⁻³ 2.26×10 ⁻⁴ 0.0130.999 9 4.76×10 ⁻³ 2.26×10 ⁻⁴ 0.1420.999 8 0.999 8 0.999 3 0.999 6 6.37×10 ⁻² 0.999 5 9.98×10 ⁻² 6.47×10 ⁻² 0.999 8 0.999 9 1.76×10 ⁻² 2.26×10 ⁻⁴ 0.1420.999 6 6.47×10 ⁻² 4.00×10 ⁻⁴ 0.1990.0010.008	0.820		
	r		0.9993		0.996 0	
23	b		4. 36×10^{-2}		0. 107	
²⁵ Na	SD		7. 31×10^{-3}		0. 101	
	DL / (µg/L)		社式 碰撞模式 1 碰撞模式 2 碰撞模式 3 0.999 9 7.81×10 ⁻² 2.71×10 ⁻³ 0.104 0.999 3 0.996 0 4.36×10 ⁻² 0.101 0.503 2.80 0.999 0 0.998 9 2.70×10 ⁻² 4.28×10 ⁻² 3.33×10 ⁻⁴ 7.65×10 ⁻³ 0.037 0.536 0.999 1 0.993 9 2.70×10 ⁻² 2.98×10 ⁻² 1.53×10 ⁻³ 2.01×10 ⁻² 0.168 0.202 43 0.999 1 0.996 8 $<(10-2)$ 1.09×10 ⁻³ 2.00×10 ⁻³ < 0.221 2.80 1.000 0 7.98×10 ⁻³ 9.68×10 ⁻⁵ 0.328 0.999 9 1.76×10 ⁻² 3.06×10 ² 0.328 0.821 0.999 9 1.76×10 ⁻² 0.142 0.142 </td <td></td>			
	r		0.999 0		0. 998 9	
24	b		2. 70×10^{-2}		4. 28×10^{-2}	
24 Mg	SD		3. 33×10^{-4}		7.65×10 ⁻³	
	DL / (µg/L)		0.037		碰撞模式 3極0.999 97.81×10 ⁻² 2.71×10 ⁻³ 0.1040.996 00.1070.1012.800.998 94.28×10 ⁻² 7.65×10 ⁻³ 0.5360.993 92.98×10 ⁻² 2.01×10 ⁻² 0.202	
	r		0.9991		0. 993 9	
²⁷ Al	b		2. 73×10^{-2}		2. 98×10^{-2}	
²⁷ Al	SD		1.53×10^{-3}		2. 01×10^{-2}	
	DL / (µg/L)		0. 168	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	r	0.984 3	0.9991	0. 996 8		0.994 3
⁴⁴ Ca	b	1.33×10^{-2}	1.09×10^{-3}	2. 00×10^{-3}		2.00×10 ⁻⁴
"Ca	SD	4. 59×10^{-2}	8. 02×10^{-5}	1. 88×10^{-3}		2. 91×10^{-4}
	$DL / (\mu g/L)$	10.3	0. 221	2.80	碰撞模式 3 0.999 9 7.81×10 ⁻² 2.71×10 ⁻³ 0.104 0.996 0 0.107 0.101 2.80 0.998 9 4.28×10 ⁻² 7.65×10 ⁻³ 0.536 0.993 9 2.98×10 ⁻² 2.01×10 ⁻² 0.202	3.53
	r				1.000 0	1.000 0
55 м	b				7. 98×10^{-3}	9.98×10 ⁻³
²⁷ Al ⁴⁴ Ca ⁵⁵ Mn ⁵⁶ Fe	SD				9.68×10 ⁻⁵	1.23×10^{-4}
	$DL / (\mu g/L)$				0.036	0.037
	r			0. 993 6	0.995 6	0.999 2
56 1	b	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.12×10^3	2. 76×10^{-2}		
re	SD			1. 76×10^{-2}	3.06×10^2	1.20×10^{-3}
	$DL / (\mu g/L)$			0. 328	0. 821	0.130
	r				0. 999 9	1.000 0
59 C	b				1. 76×10^{-2}	2. 40×10^{-2}
Co	SD				7. 89×10^{-5}	6. 19×10 ⁻⁵
	$DL / (\mu g/L)$				0.013	0.008
	r				0. 999 9	1.000 0
60 NI:	b				4. 76×10^{-3}	41.7
111	SD				2. 26×10^{-4}	3.64×10^{-4}
	$DL / (\mu g/L)$				$\begin{array}{c} 7.81 \times 10^{-2} \\ 2.71 \times 10^{-3} \\ 0.104 \\ 0.996 \ 0 \\ 0.107 \\ 0.101 \\ 2.80 \\ 0.998 \ 9 \\ 4.28 \times 10^{-2} \\ 7.65 \times 10^{-3} \\ 0.536 \\ 0.993 \ 9 \\ 2.98 \times 10^{-2} \\ 2.01 \times 10^{-2} \\ 0.202 \\ \end{array}$	2. 62×10^{-5}
	r	0.999 8	0. 999 3	0. 999 6		0.999 5
⁶⁵ C	b	6. 37×10^{-2}	9.98×10 ⁻²	6. 47×10^{-2}		3.08×10^{-2}
Cu	SD	4.00×10 ⁻⁴	3.33×10^{-5}	1. 75×10^{-4}		1.71×10^{-4}
	$DL / (\mu g/L)$	0.019	0.001	0.008		0.017

		表 1	标准曲线和检出限	
Fable	1	Stand	lard curve and detection	limit

注:r和b分别为标准曲线的线性相关系数和斜率;SD为空白溶液的标准偏差;DL为检出限。

微量元素的分析要求。

2.3 样品分析结果

对镍钴锰三元正极材料及其原材料金属氧化物前驱体进行一系列筛选测试。150 批次样品的检测结果表明,Li含量范围是:6.70%~7.73 %;Co含量范围是:4.61%~56.34%;Ni含量范围是:1.93%~31.93%;Mn含量范围是:1.16%~30.21%。部分样品的测定分析结果见表5。

对比镍钴锰三元正极材料和原材料金属氧化

物前驱体的 Na、Mg、Al、Ca、Fe、Cu 元素的检测数据,可见选择低杂质含量的原材料金属氧化物前驱体,能有效控制镍钴锰三元正极材料中这些低含量的微量元素,使得研究材料满足企业的质量控制标准。

3 结论

本实验通过碰撞反应池(iCRC)和检测器衰减 降低目标元素的信号响应值,对 RF 射频功率和离

表 2 仪器工作参数 Table 2 Operating parameters of the instrument

参数	碰撞模式1	碰撞模式3	碰撞模式4
等离子气流量/(L/min)	10.5	10.5	10.5
辅助气流量/(L/min)	1.8	1.5	1.5
雾化器气流量/(L/min)	1.10	1.10	1.10
RF 射频功率/kW	0.80	1.20	1.20
第一级离子透镜电压/V	-166	-120	-200
第二级离子透镜电压/V	-604	-604	-604
第三级离子透镜电压/V	-536	-536	-536
iCRC 碰撞 He 气流量/(mL/min)	40	100	110
潜在干扰	无	无	$^{40}\mathrm{Ar}^{16}\mathrm{O}$
衰减模式	无	medium	Auto
停留时间/ms	20	20	20
扫描次数	10	10	10
重复次数	5	5	5
泵速/rpm	20	20	20
稳定延迟/s	10	5	5

表 3 相关系数、斜率、标准偏差和检出限

Table 3	Correlation coefficients, slope, standard
	deviation and detection limits

元素	r	b	SD	$DL\!/(\mu g\!/g)$
⁷ Li	0.9999	7.81×10 ⁻²	2.71×10 ⁻³	1.04
²³ Na	0.9993	4. 36×10^{-2}	7.31×10 ⁻³	5.03
24 Mg	0.9990	2. 70×10^{-2}	3.33×10^{-4}	0.37
²⁷ Al	0.9991	2.73×10 ⁻²	1.53×10 ⁻³	1.68
⁴⁴ Ca	0.9991	1.09×10^{-3}	8. 02×10^{-5}	2.21
⁵⁵ Mn	1.000 0	7.98×10 ⁻³	9.67×10 ⁻⁵	0.36
$^{56}\mathrm{Fe}$	0.9992	2.76×10 ⁻²	1.20×10^{-3}	1.30
⁵⁹ Co	0.9999	1.76×10^{-2}	7.89 $\times 10^{-5}$	0.13
⁶⁰ Ni	0.9999	4. 76×10^{-3}	2.26×10 ⁻⁴	1.42
⁶⁵ Cu	0.9993	9.98×10 ⁻²	3.33×10^{-5}	0.01

表 4 加标回收率和相对标准偏差 Table 4 Recoveries and relative standard

deviations of the method								
加标绝对	加标浓度	测定浓度	测定总浓	回收率	RSD			
量∕µg	$/(\mu g/L)$	$/(\mu\text{g/L})$	度/(µg/L)	1%	/%			
100	1000	7.09×10^3	8.00×10 ³	91	0.49			
1	10	4 20	16.8	106	2 61			

²³ Na	1	10	4.20	16.8	106	2.61
$^{24}\mathrm{Mg}$	1	10	4.81	15.0	102	1.27
$^{27}\mathrm{Al}$	1	10	1.88	11.2	93	1.82
⁴⁴ Ca	1	10	6.20	19.4	112	2.81
⁵⁵ Mn	100	1000	1.88×10^{4}	1.97×10^{4}	90	0.26
$^{56}\mathrm{Fe}$	1	10	2.20	11.9	97	2.90
⁵⁹ Co	100	1000	2.08×10^4	2. 17×10 ⁴	90	0.35
⁶⁰ Ni	100	1000	1.96×10^4	2. 05×10^4	90	0.24
⁶⁵ Cu	1	10	0.34	10.0	97	1.34

注:回收率=(测定总浓度-测定浓度)/加标浓度×100%。

子透镜电压等参数进行优化处理,选择 Rh 作为内标,在同一个测试方法中编辑不同参数的三个测试 模式,实现了一次进样,镍钴锰三元正极材料及其 原材料金属氧化物前驱体中的主要组成元素和低 (微)量杂质元素的同步测定。结果显示,各元素标 准曲线线性关系良好,相关系数大于 0.999 0,检出 限为 0.01~5.03 μg/g,加标回收率为 90% ~112%, RSD<3%。该方法操作简便、快速、检出限低、准确 度高、精确度好,为镍钴锰三元正极材料的研发及 质量控制提供了新的测试技术。

致谢: 衷心感谢漆亮研究员对本工作的大力 支持!

表 5 部分样品测定结果

元素

⁷Li

Table 5 Analytical results of some samples							(%)			
编号	V07084	V07281	V09104	V07039-2	V07188-2	V07268	V04284-2	V07626	V093-1	V093-2
Li	6.96	7.14	7.25	7.18	7.15	7.04	6.77	7.09	6.75	6.51
³ Na	5. 20×10^{-3}	5.00×10 ⁻³	2. 60×10^{-3}	6. 20×10 ⁻⁴	1.20×10^{-3}	5.00×10 ⁻³	1.90×10^{-3}	4. 20×10 ⁻³	4. 50×10^{-3}	4. 20×10 ⁻³
⁴ Mg	2. 15×10 ⁻³	3.08×10^{-3}	2. 74×10^{-3}	2. 12×10 ⁻³	3.04×10^{-3}	1.69×10^{-3}	2. 16×10 ⁻³	4.81×10 ⁻³	6. 00×10^{-3}	3.80×10 ⁻³
⁷ Al	4. 55×10^{-3}	5.66×10 ⁻³	5. 10×10 ⁻³	4. 45×10^{-3}	4. 23×10 ⁻³	1.37×10^{-3}	1.70×10^{-3}	1.88×10^{-3}	2. 18×10 ⁻³	2.80×10 ⁻³
⁴ Ca	3. 50×10^{-3}	2.70×10 ⁻³	5. 30×10^{-3}	3. 50×10^{-3}	3. 20×10^{-3}	1.80×10^{-3}	3. 76×10^{-3}	6. 20×10^{-3}	1.50×10^{-3}	2.00×10^{-4}
⁵ Mn	17.7	17.6	17.0	17.5	17.5	17.3	18.4	18.8	17.37	17.10
⁶ Fe	3. 80×10^{-3}	1.51×10^{-3}	2. 60×10^{-3}	3. 80×10^{-3}	2. 10×10 ⁻³	1.20×10^{-3}	2.80×10 ⁻³	2. 20×10^{-3}	5.60×10 ⁻³	1.50×10^{-3}
⁹ Co	12.6	12.7	12.7	12.7	12.8	13.2	18.6	20.8	22.8	22.1
⁰ Ni	30.3	30.3	30.1	30.4	30.6	30.3	19.9	19.6	20.3	20.2
⁵ Cu	4. 20×10^{-4}	5.00 $\times 10^{-4}$	2.80 $\times 10^{-4}$	4. 20×10^{-4}	5.00 $\times 10^{-4}$	8.30 $\times 10^{-4}$	6. 20×10^{-5}	3.40×10^{-4}	3.00×10^{-4}	2.80 $\times 10^{-4}$

参考文献(References):

5

- Nayak P K, Grinblat J, Levi M, Wu Y, Powell B, Aurbach D. 2014. TEM and Raman spectroscopy evidence of layered to spinel phase transformation in layered LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ upon cycling to higher voltages. Journal of Electroanalytical Chemistry, 733: 6-19
- Park S H, Kang S H, Johnson C S, Amine K, Thackeray M M. 2007. Lithium-manganese-nickel-oxide electrodes with integrated layeredspinel structures for lithium batteries. Electrochemistry Communications, 9(2): 262–268
- Thompson J J, Houk R S. 1987. A study of internal standardization in inductively coupled plasma-mass spectrometry. Applied Spectroscopy, 41(5): 801–806

- Yang S Y, Wang X Y, Chen Q Q, Yang X K, Li J J, Wei Q L. 2012. Effects of complexants on [Ni_{1/3}Co_{1/3}Mn_{1/3}]CO₃ morphology and electrochemical performance of LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂. Journal of Solid State Electrochemistry, 16(2): 481–490
- Ye D L, Sun C H, Chen Y, Ozawa K, Hulicova-Jurcakova D, Zou J, Wang L Z. 2015. Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries. Nano Research, 8(3): 808-820
- Zhu Y F, You J W, Huang H F, Li G X, Zhou W Z, Guo J. 2017. Facile synthesis and electrochemical properties of layered Li $[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ as cathode materials for lithium-ion batteries. Frontiers of Materials Science, 11(2): 155–161
- 陈鹏, 肖冠, 廖世军. 2016. 具有不同组成的镍钴锰三元材料的最新研究进展. 化工进展, 35(1): 166-174
- 陈银花,周旻. 2016. 样品测定中加标量的确定及加标回收率计算 中注意事项的探讨. 污染防治技术, 29(6):75-77
- 高鹏, 欧阳志勇. 2018. 飞纳台式扫描电镜在锂电材料形貌观察及 粒径分析中的应用. 江西化工, (5):55-58
- 巩海娟,王玉,韩健,李琳,王亚楠. 2020.一体化碰撞反应(iCRC)
 -电感耦合等离子体质谱(ICP-MS)法测定地质样品中痕量稀土
 元素.中国无机分析化学,10(2):42-47
- 黄龙,吴开洪,吴昌片. 2019. EDTA 电位滴定法测定锂电三元材料 中钻镍锰合量. 广东化工,46(10):159-160
- 黄瑞鸿,杨英全,李华成,李春霞,王春飞. 2018. 锂电池正极材料 镍钴锰酸锂中钴含量的测定. 中国锰业,36(2):144-147
- 郎荣树,黄添文,卫盼盼,刘占文. 2019. 微波消解 ICP-MS 测试锂离 子电池三元材料中的 41 种元素. 中国检验检测,27(2):13-16
- 李建刚, 万春荣, 杨冬平, 杨张平. 2004. LiNi_{3/8}Co_{2/8}Mn_{3/8}O₂ 正极 材料氟掺杂改性研究. 无机材料学报, 19(6): 1298-1306
- 刘纪迎, 贾效旭, 李志林. 2015. 反应条件对镍钴锰氢氧化物晶体 形貌的影响. 宁夏工程技术, 14(2): 141-145
- 马生凤,朱云,孙红宾,王蕾,许俊玉,温宏利. 2016. 封闭溶样-电

感耦合等离子体质谱法测定硫化铅矿石中 40 种微量元素. 矿物岩石地球化学通报, 35(3): 527-533

- 漆亮, 胡静. 2000. 电感耦合等离子体质谱法测定花岗岩、沉积物中的微量元素. 广西化工, (S1): 140-142
- 冉敬, 杜谷, 杨乐山, 熊及滉. 2008. 关于检出限的定义及分类的探 讨. 岩矿测试, 27(2): 155-157
- 宋树成,郭如侠. 2011. 浅谈样品加标回收率. 水科学与工程技术, (4):92-93
- 王静. 2016. 电感耦合等离子体发射光谱(ICP-OES)法测定镍钴锰 酸锂中主元素含量. 中国无机分析化学, 6(1): 45-47
- 韦屹. 2015. 锂离子电池正极材料 LiNi_xMn_yCo_{1-x-y} O₂ 的组分与扩散 性能研究进展. 企业科技与发展, (6): 31-33
- 徐金玲. 2013. 锂离子电池正极材料镍钴锰酸锂中镍、钴、锰含量测 定. 矿冶工程, 33(2): 120-124
- 于晓微,张春丽,付春明,张晓波. 2014. 锰酸锂中锰含量测定方法 改进. 无机盐工业,46(1):59-60
- 余兴. 2013. 电感耦合等离子体四极杆质谱碰撞/反应池技术现状 与进展. 冶金分析, 33(3): 14-23
- 赵小学,赵宗生,陈纯,张霖琳,宋娟娥. 2016. 电感耦合等离子体 -质谱法内标元素选择的研究. 中国环境监测, 32(1):84-87
- 中华人民共和国国家质量监督检验检疫总局. 2006. JJF 1159-2006 四极杆电感耦合等离子体质谱仪校准规范. 北京:中国计量出 版社.
- 钟胜奎, 刘乐通, 姜吉琼, 刘洁群, 王健, 李阳, 朱峰. 2009. 锂离 子电池正极材料 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ 的合成及性能. 材料导报, 23(3): 35-39
- 朱乾华. 2013. 电感耦合等离子体质谱法测定锰酸锂中杂质元素. 光谱学与光谱分析, 33(5):1350-1353
- 朱玉巧. 2018. 全自动电位滴定仪测试锰酸锂正极材料中锰含量的 方法. 电池工业, 22(1): 3-5

(本文责任编辑:刘莹;英文审校:肖保华)