MDGC/GCMS法检测复杂基质样品(葱、蒜)中有机 磷农药

摘 要:建立了 MDGC/GCMS 法检测复杂基质样品(葱、蒜)中有机磷农药。通过采用中心切割二维色谱技术,有效解决了传统检测方法背景干扰较大,难以准确定性、定量的问题。样品经乙酸乙酯提取,ENVI-CARB 小柱净化后,用 MDGC/GCMS 分离和检测。有机磷农药在 0.01~0.5mg/L 浓度范围内标准曲线线性良好,相关系数均在 0.998 以上,样品加标回收率在 68~120%之间,对基质加标样品连续 5 次进样,峰面积 RSD 值均小于 7.0%,精密度良好。

关键词: MDGC/GCMS 有机磷农药 葱 蒜

蔬菜中农药残留的问题关乎广大人民群众的身体健康,正越来越受到广泛的关注。当今世界农残分析向多残留、快速分析发展,要保证高通量的检测方法的准确性,需要有严格的农药残留确证技术。

目前农业部蔬菜有机磷农药多残留例行监测执行农业标准 NY/T 761-2008《蔬菜和水果中有机氯、有机磷、拟除虫菊酯和氨基甲酸酯类农药多残留的测定》,用 GC/FPD 快速检测蔬菜有机磷农药残留,对超标或接近限量值样品,用双柱双 FPD 复测,仍不能确认的再用 GCMS 判定,这样蔬菜中农药多残留检测更快速准确。绿叶菜类、白菜类、瓜类、茄果类、豆类、薯芋类和根菜类蔬菜几乎没有样品杂质峰,有机磷农药测定不受干扰; 甘蓝类蔬菜(如紫甘蓝、甘蓝和西兰花等)有显著的样品杂质峰,敌敌畏、甲胺磷、甲拌磷和甲基毒死蜱等测定常受干扰; 特别是葱蒜类蔬菜(如蒜、葱等)有较强的样品杂质峰,有机磷农药多残留测定无法进行。

本文采用 MDGC/GCMS 对葱蒜中的 29 种有机磷农药进行分析,可以有效解决背景干扰问题。

1. 实验部分

1.1 仪器

岛津中心切割二维气相色谱质谱联用仪: MDGC/GCMS

MDGC/GCMS 基于 Multi Dean Switch 多重切割技术,由两台 GC (一台含一个 FPD 检测器,另一台接 MS)构成双柱箱系统,每个柱箱内均有一根色谱柱,并通过全惰性切割单元连接。在第一根色谱柱上无法完全分离的组分,可以导入第二根色谱柱进一步分离和检测。

1.2 分析条件

GC 分析条件 (一维):

进样口压力: 217.1 kPa

进样口温度: 280 ℃

进样方式:不分流

进样时间: 1.0min

进样量: 1.0uL

色谱柱 1:

DB-1701 30 m×0.25 mmI.D×0.25 μm

柱 1 温度程序:

70 °C(1min)_30 °C/min_160 °C_5 °C/min_2

 00° C(5min)_2°C/min_220°C(2min)_15°C/m

in_220°C(13min)

检测器 1: FPD

检测器 1 温度: 280℃

氢气: 62.5 mL/min

空气: 90 mL/min

GCMS 分析条件 (二维):

色谱柱 2:

Rxi-5ms $30 \text{ m} \times 0.25 \text{ mmI.D.} \times 0.25 \mu\text{m}$

柱 2 温度程序:

60 °C (5 min)_5 °C/min_220 °C (2 min)

_10°C/min_300°C(3min)

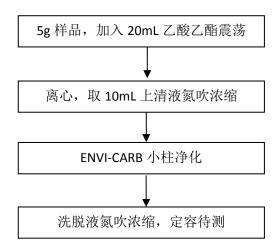
检测器 2: MS

离子源温度: 250 ℃

接口温度::280℃

采集方式:采用 SCAN 方式定性,SIM 方式

定量


扫描范围: m/z 50~500

切割压力: 145.0kPa

切割程序:

段	切割范围	段	切割范围
1	9.19∼9.37 min	14	28.42~28.77 min
2	10.59∼10.92 min	15	28.78~29.06 min
3	12.99~13.17 min	16	29.10~29.45 min
4	15.15~15.43 min	17	29.48~29.93 min
5	17.69~17.91 min	18	30.07~30.34 min
6	19.92~20.40 min	19	31.14~31.52 min
7	20.85~21.15 min	20	31.95~32.33 min
8	21.60~21.91 min	21	32.34~32.63min
9	23.18~23.49 min	22	34.05~34.30 min
10	23.80~24.18 min	23	34.86~35.14 min
11	24.55~25.18 min	24	37.33~37.65 min
12	26.41~26.82 min	25	38.83~39.12 min
13	27.97~28.36 min		
$\overline{}$			

2. 样品前处理

3. 结果与讨论

3.1 未切割时检测器 1 谱图

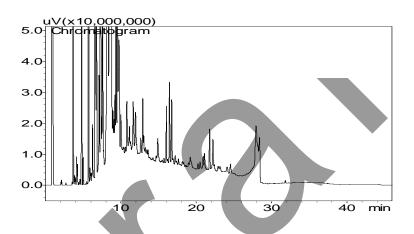


图 1 基质空白色谱图

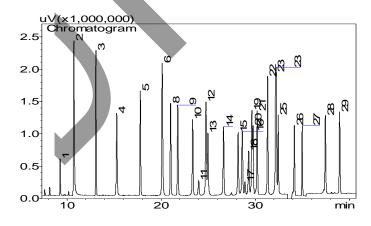


图 2 标准样品色谱图 (0.1 μg/mL)

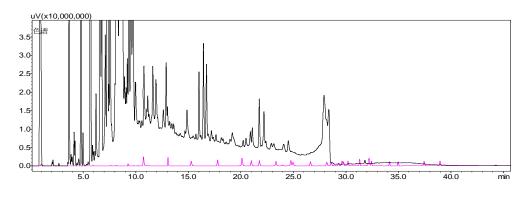


图 3 谱图对比 (黑色为基质空白)

从对比谱图可以看出,复杂基质样品把农药标品完全覆盖了,基质干扰非常的大,即使样品中有农药残留,用 GC 方法是没办法进行准确的定性和定量的,因此本方法采用把 29 种有机磷农药逐个切至 GCMS 分离检测的方案,大大减少了复杂基质的干扰。

3.2 切割时检测器 2 谱图

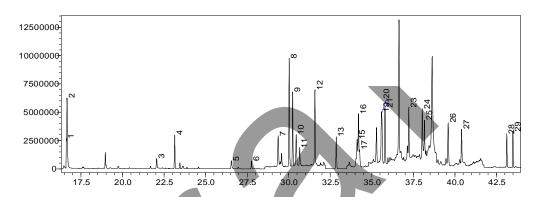
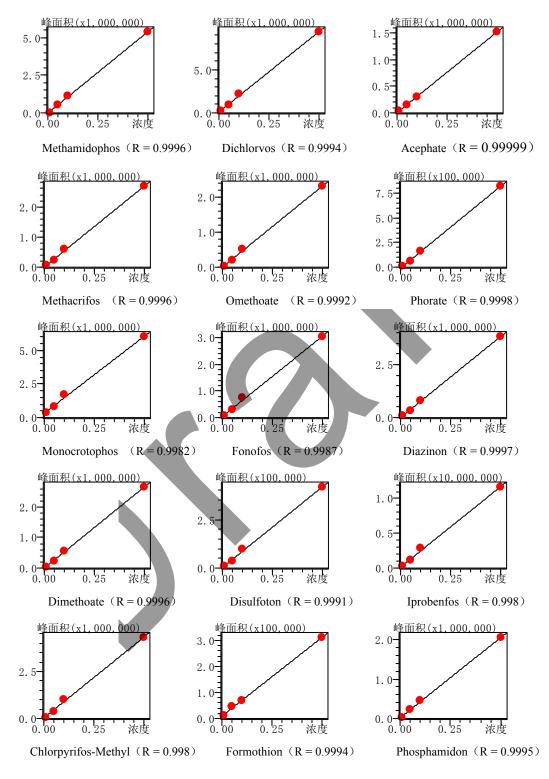



图 4 29 种有机磷农药逐个切割至 GCMS 分离检测时检测器 2 农药标品谱图表 1 29 种有机磷农药逐个切割至 GCMS 分离检测时检测器 2 农药名称及保留时间

No.	保留时间(min)	化合物名称	No.	保留时间(min)	化合物名称
1	16.619	Methamidophos	16	34.202	Pirimiphos methyl
2	16.661	Dichlorvos	17	34.276	Parathion-methyl
3	22.046	Acephate	18	35.291	Chlorpyrifos
4	23.135	Methacrifos	19	35.588	Malathion
5	26.555	Omethoate	20	35.622	Fenitrothion
6	27.760	Phorate	21	35.801	Fenthion
7	29.373	Monocrotophos	22	36.641	Parathion
8	30.031	Fonofos	23	37.236	Isocarbophos
9	30.236	Diazinon	24	38.050	Quinalphos
10	30.457	Dimethoate	25	38.184	Phenthoate
11	30.659	Disulfoton	26	39.604	Methidathion
12	31.581	Iprobenfos	27	40.407	Fenamiphos
13	32.864	Chlorpyrifos-Methyl	28	43.125	Carbofenothion
14	34.133	Formothion	29	43.491	Triazophos
15	34.126	Phosphamidon			

3.3 标准曲线

配制浓度为 0.01、0.05、0.1、0.5 mg/L 的混合标准溶液,将 29 种有机磷农药逐个切割至二维 GCMS 进一步分离,得到 29 种有机磷农药的 GCMS 谱图,并建立 29 种有机磷农药的标准曲线,各组分的标准曲线及相关系数图 5 所示。

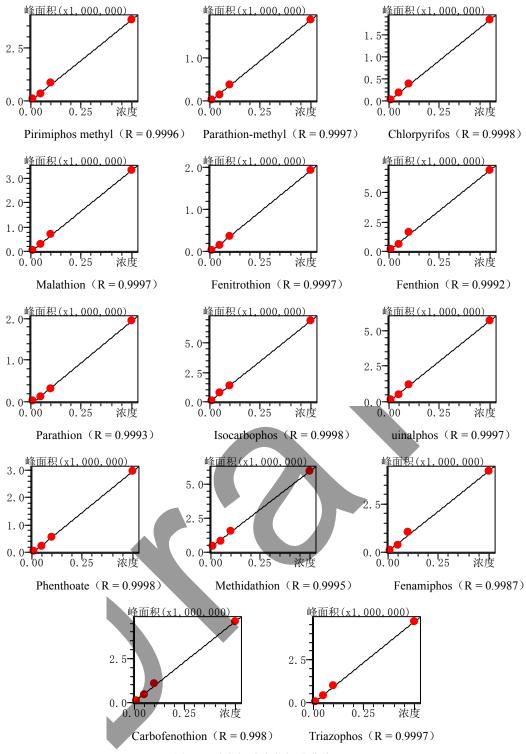


图 5 29 种有机磷农药标准曲线

3.4 精密度及回收率实验

将有机磷农药标样添加于样品中,添加浓度为 100μg/L,经提取净化后,连续测定 5 次,考察仪器精密度及回收率,得到峰面积的 RSD 值及回收结果如表 2 所示。

表 2 29 种有机磷农药峰面积的 RSD% (n=5) 及回收率结果

ID	化合物名称	RSD (%)	回收率 (%)	检出限 (μg/kg)	ID	化合物名称	RSD (%)	回收率 (%)	检出限 (μg/kg)
1	Methamidophos	6.5	71.3	0.42	16	Pirimiphos methyl	1.2	105.1	0.44
2	Dichlorvos	2.6	114.3	0.12	17	Parathion-methyl	4.8	118.9	2.50
3	Acephate	6.2	78.3	1.44	18	Chlorpyrifos	1.4	106.7	2.32
4	Methacrifos	3.0	112.1	0.50	19	Malathion	1.4	101.4	1.96
5	Omethoate	3.0	85.2	0.54	20	Fenitrothion	1.5	111.5	2.59
6	Phorate	2.5	113.9	1.16	21	Fenthion	1.3	109.1	0.68
7	Monocrotophos	1.8	110.9	0.02	22	Parathion	1.4	117.7	2.10
8	Fonofos	1.1	112.7	0.49	23	Isocarbophos	1.8	77.9	1.75
9	Diazinon	1.4	91.0	1.07	24	Quinalphos	1.2	100.0	0.85
10	Dimethoate	1.7	119.7	2.21	25	Phenthoate	2.6	108.0	2.00
11	Disulfoton	1.5	116.7	1.01	26	Methidathion	3.4	68.4	3.84
12	Iprobenfos	1.5	111.5	2.92	27	Fenamiphos	1.4	85.7	0.36
13	Chlorpyrifos-Methyl	0.8	117.1	0.08	28	Carbofenothion	3.5	95.1	0.80
14	Formothion	4.5	113.7	2.98	29	Triazophos	1.8	88.6	1.45
15	Phosphamidon	4.0	95.8	1.46					

3.5 检出限

根据 10µg/L 标样数据,以 3 倍信噪比计算有机磷农药检出限,如表 2 所示。

4. 结论

本方法采用岛津 MDGC/GCMS 检测复杂基质样品(葱、蒜)中的有机磷农药,在 0.01~0.5mg/L 范围内标准曲线线性良好,相关系数均在 0.998 以上,方法回收率在 68~120% 之间,对加标样品连续 5 次测定,峰面积相对标准偏差均小于 7.0%,精密度良好。本方法操作简单,可有效地检测复杂基质(葱、蒜)中的农药残留。