选择在盐酸介质中进行。分别改变试剂用量进行实验,结果 表明,盐酸、中性红和高碘酸钾用量分别在0.3~0.5,0.6~ 0.9,2.6~2.9 ml 范围内, A 值较大且较稳定。确定各种试 剂用量分别为盐酸溶液 0.4 ml,中性红溶液 0.8 ml,高碘酸钾 溶液 2.8 ml。

- 2.3 反应温度 在上述条件下,固定反应时间 15 min,按实 验方法,改变反应温度进行实验。结果表明,该反应在室温下 几乎不进行,随着温度升高,阻抑反应和非阻抑反应均加快, 反应温度为 80 时, A 最大,故选反应温度为 80 。
- 2.4 反应时间及速率常数 在反应温度为80 条件下,改 变反应时间进行实验。反应在 10~15 min 内, A 随反应时 间增加而呈线性增加,15 min 后呈下降趋势;拟合 A 与时间 t 的线性关系方程式为: A = 0.02683, t-0.0044, 相关系数 r=0.9960,由此推测反应速率常数为 4.5 ×10⁻⁴/s。选择反 应时间 15 min。
- 2.5 体系的稳定性 反应后的体系用流水冷却至室温,在室 温下静置。每隔 30 min 测定一次吸光度。结果表明,反应后 的体系室温下在 2 h 内 A 变化不大于 1.8 %, 说明体系具有 较高的稳定性。
- 2.6 工作曲线、检出限、精密度 按选定的实验条件,仅改变 2,4-二硝基甲苯标准溶液的用量进行实验。结果表明,2,4 - 二硝基甲苯浓度在 0.5 ~ 10 µg/ ml 范围内与 A 呈线性关 系,用最小二乘法处理,得线性回归方程为: A = 1.985 C (mg/25 ml) + 0.03246,相关系数 r = 0.9929,对空白进行 11

- 次平行实验,标准偏差为 4.1 ×10⁻³,由此推出该法检出限为 0.24 µg/ ml (以 3 S/b 计)。对浓度为 1.0,3.2 µg/ ml 的 2,4-二硝基甲苯标准溶液分别进行 11 次平行实验, RSD %分别为 3.0和1.7。
- 2.7 共存物质的影响 对部分常见离子和部分有机物进行 干扰实验,测定 8 µg/ ml 2,4 - 二硝基甲苯溶液,相对误差控 制在 ±5 %之内时,1000 倍的 K+、Na+、NH4+、PO43+、NO3-、 Cl⁻;400 倍的 Cu²⁺、V(V)、Mg²⁺、Ca²⁺、Al³⁺、Co²⁺、Mn²⁺、 Pb²⁺;100 倍的 Cd²⁺、Ni²⁺、Cr³⁺不干扰此反应;80 倍的苯胺、 间苯二胺以及 15 倍的硝基苯不干扰。
- 2.8 样品测定 准确移取一定量的废水样,测定其中2,4-二硝甲苯含量并作回收实验,回收率为96.8%~102%,相对 标准偏差为 2.2%~2.9%。

3 结论

用阻抑氧化光度法测定 2,4-二硝基甲苯灵敏度较高, 且所需仪器设备简单,操作简便、迅速,适合于水样中2,4-二硝基甲苯的分析。

参考文献

- 1 魏文德. 有机化工原料大全下册[M]. 北京:化学工业出版社, 1999.727 - 731.
- 陈松茂,翁世伟.化工产品实用手册(三)[M].上海:上海科学技术 出版社,1990.283 - 285.
- 3 刘连伟. 阻抑褪色光度法测定痕量间苯二酚[J]. 分析试验室, 2002.21(1):21 - 23.

收稿日期: 2004-09-24 (宋艳萍编辑 张亚莲校对)

文章编号: 1001-0580(2005)02-0242-02 中图分类号: R155.5 文献标识码: B

【检验技术】

ICP - AES 法测定葡萄酒中的微量元素

王莹,辛士刚

葡萄酒中不但含有人体所需的多种氨基酸,而且含有人 体必需的微量元素[1,2],对葡萄酒中的微量元素进行测定和 技术监督可以为我国的葡萄酒市场营建一个公平的竞争环 境,同时也保护了人们的饮食卫生安全以及消费者的利益。 本实验采用电感耦合等离子体发射光谱法 ICP - AES 测定了 4 种葡萄酒中的 Fe、K、Na、Al、Zn、Ca、Mg、Sr、Ge 等元素的含 量^[3],比较了4种样品前处理方法的效果。现报告如下。

1 实验部分

- 1.1 葡萄酒样品 4种葡萄酒为吉林碧野野生原汁山葡萄 酒、长白山紫金野生红葡萄酒、通化高级红葡萄酒、吉林长白 山野生山葡萄酒,分别编号为A、B、C、D。
- 1.2 实验仪器与工作条件 DRE 电感耦合等离子原子发射

光谱仪(美国利曼 Leeman 公司)。功率 1.0 kW、氩气压力

作者单位: 沈阳师范大学化学与生命科学学院,沈阳 110034 作者简介: 王莹(1966 -),女,黑龙江牡丹江人,副教授,硕士,主要从 事分析化学的研究工作。

- 0.6 mPa,冷却气流量 15 L/min,辅助气流量 0.2 L/min,雾化 器压力 374.06 Pa,提升量 1.5 ml/min,观察位置自动优化。 马弗炉,沈阳市工业电炉厂。高压消化罐(聚四氟乙烯高压熔 样器),上海分析仪器厂。远红外快速恒温干燥箱(YHG),上 海跃进医疗仪器厂。
- 1.3 试剂与标准溶液 盐酸、硝酸(均为优级纯)。标准储备 液:Fe、K、Na、Al、Zn、Ca、Mg、Sr、Ge 的标准液均为 1 000 µg/ml。国家钢铁材料测试中心冶金部钢铁研究总院。混合 标准溶液:将标准储备液用2%硝酸逐级稀释,混合至 Fe、K、 Na、Al、Zn、Ca、Mg、Sr、Ce 浓度分别为 0.00,10.00,20.00 $\mu g/ml_o$
- 1.4 样品处理 本实验对葡萄酒样品采用 4 种处理方法。 (1) 将 4 种样品各准确称取 25 ml .放入烧杯中 .再分别加入 10 ml 硝酸,用电热套加热,直至烧杯中液体剩余1~2 ml 时,取 出冷却,转移至50 ml 容量瓶中,用2%硝酸稀至刻度,待测。 此种方法所得样品为1号样品。(2)将4种样品各准确称取

50 ml .分别放入蒸发皿中 .将蒸发皿放在电炉上烘干 .并使之 完全变白时,取出冷却,用盐酸提取后,过滤再转移至 50 ml 容量瓶中,用去离子水稀释至刻度,待测。此种方法所得样品 为 2 号样品。(3) 将 4 种样品各准确称取 50 ml 分别放入蒸发 皿中,将蒸发皿放在电炉上烘干,并使之完全变白时,取出冷 却,用硝酸提取后,过滤再转移至 50 ml 容量瓶中,用去离子 水稀释至刻度,待测。此种方法所得样品为3号样品。(4)将 4 种样品各准确称取 5 ml,分别放入消化罐的消化槽内,再分 别加入 5 ml 硝酸,将消化罐盖好、旋紧。放入恒温干燥箱内, 在 140 下消化 3~4 h,取出冷却,转移至 50 ml 容量瓶中,用 去离子水稀释至刻度,待测。此种方法所得样品为4号样品。 1.4 测定 在仪器最佳工作条件下,制作各元素的标准曲 线,根据标准曲线对各个样品进行测定。

表 1 样品测定结果(µg/g)

炉里	样品	元素	样品处理方法				
姍丂			1	2	3	4	
A	吉林	Fe	0. 628	0. 659	0.7262	0.775	
	碧野	K	7. 254	8.326	8.68	8.65	
	野生	Na	218.4	226	234.7	231.5	
	原汁	Al	4. 028	4.099	4. 621	4. 236	
	山葡	Zn	0.4668	0.485	0.4998	0.4330	
	萄酒	Ca	36.86	36.95	38.89	36. 85	
		Mg	7.766	8.53	8.56	8.321	
		Sr	0.8574	0.7259	0.8769	0.8230	
		Ge	0.2766	0. 271 5	0. 280 5	0. 244 0	
В	长白	Fe	2.690	3.023	3.537	2.70	
	山紫	K	94.48	94.42	103.7	101.2	
	金野	Na	12.73	13.67	14.22	12.98	
	生红	Al	4. 590	4. 284	4. 581	4.845	
	葡萄	Zn	0. 398 4	0.3503	0.4615	0.3960	
	酒	Ca	30.26	29.87	37.71	33.52	
		Mg	16.35	14.74	16.60	15.76	
		Sr	0.6456	0.6882	0. 698 1	0.6880	
		Ge	0.3450	0.3502	0.3926	0.3620	
C	通化	Fe	0.2602	0. 253 7	0. 277 9	0.255	
	高级	K	48.42	46.33	49.84	47.44	
	红葡	Na	98. 12	83.90	108.3	96. 94	
	萄酒	Al	0.3614	0.3652	0. 385 7	0.3481	
		Zn	0.3772	0.3854	0.3972	0.3360	
		Ca	31.10	32.77	35.71	30. 37	
		Mg	6. 624	6.983	7. 549	7.473	
		Sr	0. 935 4	0.9631	1.011	0.9810	
		Ge	0. 340 4	0.3408	0.3484	0.3180	
D	吉林	Fe	0.950	0. 941 9	0.9650	0.847	
	长白	K	88. 92	91.98	93.9	87.38	
	山野	Na	75.22	76.54	82.70	81.34	
	生山	Al	7. 922	8.128	8. 271	7.486	
	葡萄	Zn	0.7380	0.7081	0.7556	0.7160	
	酒	Ca	30.70	28.47	36.65	32.28	
		Mg	15.54	14.76	14. 93	14. 13	
		Sr	0.8758	0.8761	0.8821	0.8090	
		Ge	0.0034	0.0036	0.0039	0.0032	

2 结果

- 2.1 分析波长的选择及背景的校正 ICP AES 法对每个 元素的测定都可以同时选择多条特征谱线,而且光谱仪具有 同步背景校正功能,因此实验中对每个测定元素选取2~3条 谱线进行测定,综合分析强度、干扰情况及稳定性,选择谱线 干扰少、精密好的分析线: Fe (238. 204 nm)、K(766. 490 nm)、 Na (588. 995 nm), A1 (309. 271 nm), Zn (213. 856 nm), Ca (393.366 nm), Mg (279.553 nm), Sr (407.771 nm), Ge (265.118 nm)_o
- 2.2 样品含量的测定(表 1) 由表 1 可见,第 3 种方法,即 用硝酸做溶剂的消化法所测的结果最高。
- 2.3 方法检出限及精密度(表 2) 对空白溶液重复测定 10 次,取3倍标准偏差所对应的浓度为各元素的检出限。

表 2 方法的检出线和相对标准偏差

元素	检出限	RSD	_ =	检出限	RSD	元素	检出限	RSD
	$(\mu g/g)$	(%)	兀系	(µg/ g)	(%)		(µg/g)	(%)
Fe	0.0040	2.15	Sr	0.0003	2.21	Zn	0.0070	2.15
K	0.0038	2.05	Al	0.0040	1.05	Ca	0.0003	1.23
Na	0.0065	0.56	Ge	0.0080	1.21	Mg	0.0005	0.05

2.4 回收率实验 加入一定量的标液进行加标回收实验,其 回收率在 94.0%~104.0%,平均回收率为 99.69%,见表 3。

表 3 元素回收率

元素	本底值	加标量	测定值	回收率
儿糸	$(\mu g/g)$	$(\mu g/g)$	$(\mu g/g)$	(%)
Fe	0. 163 7	1	1. 152	98.99
K	3. 228	1	4. 271	101.02
Na	56.87	1	58. 01	100.24
Al	0. 149	1	1. 15	100.09
Zn	0. 109 1	1	1.066	96.11
Ca	9. 987	1	11. 16	101.57
Mg	1.428	1	2. 454	101.07
Sr	0. 208 9	2	2. 094	94.80
Ge	0.0546	2	2. 123	103.33

3 结论

本文采用 4 种处理方法测定葡萄酒中的微量元素。实验 结果表明,以硝酸做溶剂的消化方法效果最佳,这可能是由于 硝酸氧化性较强,干法消化时间短,损失少的缘故。其回收率 均在94.0%~104.0%范围内,该方法既简单、方便、快速,且 检测结果的准确度高,适用于实验室常规分析。

参考文献

- 1 中国预防医学科学院.食品成分表[M].北京:人民卫生出版社, 1992.58.
- 杜利成,宋开平. 微量元素与人体健康[J]. 中国食物与营养,2000, 28(5):37 - 38.
- 3 黄淑萍. ICP AES 技术测禽蛋中微量元素及营养价值的初步研 究[J]. 山西大学学报,1995,18(1):41.

收稿日期: 2004-06-24 (任旭红编辑 张亚莲校对)