

根据美国 **EPA 524.2** 方法使用吹扫捕集和气相色谱/ 质谱法分析挥发性有机物

Cheri Coody, Public Health Laboratory, Mississippi State Health Department, Jackson, MS USA Michael J. Burke and Elaine A. LeMoine, PerkinElmer Instruments, 761 Main Avenue, Norwalk, CT 06897 USA

简介

清洁饮用水是在全球范围内受到关注的 课题项目。污染可危及水供给的质量并 引发对健康的短期和长期影响。严格的 水质标准规定,应在极低的浓度范围内 对水中的多种污染物进行检测和定量, 这样有助于保障饮用水的安全。美 EPA 524.2 (1) 方法提供了关于确定水 中的挥发性有机污染物的浓度是否达到 了水质目标的必要指导原则。在此列出 的设备和条件提供了严格符合 524.2 方 法标准的数据。它适用于广泛的挥发性 有机化合物,并提供了满足饮用水标准 所需的必要灵敏度。针对更常用的目标 化合物列出了检出限、校正结果、准确 性和精确度数据。

方法摘要

这是一种引入样品吹扫捕集技术的气相 色谱/质谱联用仪 (GC/MS) 方法。通过 向样品中鼓入惰性气体,对样品中的挥 发性成分进行吹扫。然后在吸附材料上 捕集这些成分、加热并反吹到气相色谱 仪 (GC) 色谱柱中。使用色谱升温程序 分离各分析物,并将其洗脱到质谱仪 (MS) 中以用于测定。通过与在相同条件 下获得的已知标准样品的保留时间和质 谱图进行比较来加以识别。使用内部标 准技术执行定量操作。

仪器条件

表 1、2 和 3 列出用于生成在此所列 数据的气相色谱仪、质谱仪以及吹扫 捕集装置的仪器参数和条件。使用开 放式分流接口将气相色谱仪色谱柱与 质谱仪传输线连接起来。接口由 1/16" 不锈钢 Swagelok® "T" 接头组成。将 0.92 x 0.12 mm 内径 x 0.1 mm 5% 苯基甲基硅油固定限流器插入珀金埃 尔默 TurboMass™ 气相色谱/质谱联 用仪中, 使另一端直接穿过连接器并 将一部分留在外面。已将在色谱柱末 端的检测器上的熔融石英输送管移 除,并将 "T" 直接连接到玻璃色谱 柱,以允许将固定限流器直接插入到 色谱柱中。将限流器插入一定距离 (该距离长度等于玻璃色谱柱的 3.5 圈),并将流出物从仪器后部排出。 此配置适用于低浓度饮用水挥发性有 机物分析。

方法性能

调谐标准

要测试仪器性能,需要分析 25 ng (或更少量)的 4-溴氟苯 (BFB)的标准溶液,并将其光谱与列于方法中的丰度标准相比较。图 1 演示使用上述条件满足 524.2 方法丰度要求的成功的 BFB 评价结果。

校正

在开始时,针对每个目标分析物执行涵盖整个分析范围的方法校正。分析样品之前,必须满足特定标准。对于系数为 20 的校正范围,至少需要三个标准样品。系数为 50 的校正范围至少需要四个标准样品,而系数为100 的校正范围则至少需要 5 个。

表 1: 色谱条件

珀金埃尔默 AutoSystem XL 气相色谱仪			
色谱柱	Vocol 60 m x 0.75 mm,I.5-μm 薄膜厚度		
柱温箱升温程序	升温至 10°C 保持 5.00 分钟,以 6°C/分钟的速度升温 至 75°C 保持 10.00 分钟		
	以 15°C/分钟的速度升温 5.00 分钟, 达到 145°C; 以 15°C/分钟的速度升温 5.00 分钟, 达到 160°C		
冷却剂	液态 CO ₂		
手动气路控制 (PPC)	氦,15.0 mL/分钟		
填充进样器	100°C		

表 2: 质谱仪条件

珀金埃尔默 Turbo	Mass 质谱仪
质量扫描范围	35-260 m/z
扫描时间	0.5 秒
中间扫描延迟	0.13 秒
灯丝延迟	2 分钟
离子源温度	150°C
输送管温度	200°C
离子化模式	El

表 3: 吹扫和捕集条件

Tekmar LSC	3000 进样器
吹扫气体流速	He, 40 mL/分钟
时间和温度设置	:
吹扫	在室温下 11 分钟
脱附	180℃ 下 4 分钟
烘烤	220℃ 下 5 分钟
捕集阱	Vocarb 3000
样品量	25 mL

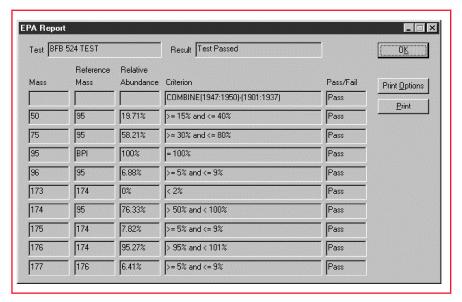


图 1. 调谐报告。

在此列出的校正数据是六个标准样品的结果,具体为 0.5、1.0、2.5、5.0、10.0 和 20.0 ppb (校正范围系数为 40)。每项校正标准都包含10 ppb 内部标准氟苯和 1 ppb 标准对溴氟苯替代溶液。

初始校正性能验证基于标准样品的 相对响应系数 (RRF) 的计算相对标 准偏差 (RSD) 与最大阈值的比较。 使用以下公式计算响应系数:

 $RF = \frac{(A_x)(Q_{is})}{(A_{is})(Q_x)}$

其中:

RF = 响应系数,

 $A_x = 分析物定量离子的积分丰度,$

 A_{is} = 内部标准样品定量离子的丰度积分,

 Q_x = 以纳克或浓度单位进行吹扫的 分析物数量,

Q_{is}= 以纳克浓度单位进行吹扫的内部 标准样品的数量。

然后使用以下公式计算 RSD:

 $RSD = 100 (SD/\overline{RF})$

其中:

RSD = 相对标准偏差,

SD = 标准偏差,且

RF=(初始校正标准样品的)平均相对 响应系数。

初始校正的计算 %RSD 必须小于 20% 才能被视为符合要求。或者,也可使用线性或二次回归校正曲线,方法为绘制:

相对于 Q_x 的 A_x/A_{is}

表 4 中所列的 %RSD 数据在使用 RSD 测试时符合校正的要求。图 2 示范一条符合要求的线性回归曲线,其中测定系数大于或等于 0.99。

准确性和精确度

必须首先通过重复分析每个浓度为

2-5 μg/L 的分析物来证明准确性和精确度。计算所测得的浓度并求出平均值。精确度是作为回收百分比进行测量的真值的百分比,准确度为该值的相对标准偏差。因此,回收百分比必须满足80-120%精确度的要求,且所有

%RSD 必须小于最大值的 20% 才能证明准确性。

表 4: 符合要求的初始校正

化合物	%RSD	化合物	%RSD
苯	7.8	1,3-二氯丙烷	10.0
溴苯	11.8	2,2-二氯丙烷	7.7
溴氯甲烷	8.5	1,1-二氯丙烯	3.7
溴二氯甲烷	6.7	顺-1,3-二氯丙烯	5.0
三溴甲烷	12.9	反-1,3-二氯丙烯	4.6
溴代甲烷	4.9	乙苯	9.5
正丁基苯	7.9	六氯丁二烯	5.3
仲丁基苯	5.2	异丙苯	5.6
叔丁基苯	5.0	4-异丙基甲苯	5.2
四氯化碳	6.3	二氯甲烷	6.5
氯苯	10.7	萘	7.2
氯乙烷	3.0	正丙基苯	8.5
氯仿	9.2	苯乙烯	7.8
氯甲烷	15.5	1,1,1,2-四氯乙烷	11.1
2-氯甲苯	13.3	1,1,2,2-四氯乙烷	17.3
4-氯甲苯	11.5	四氯乙烯	4.2
二溴氯甲烷	9.8	甲苯	8.3
二溴甲烷	6.2	1,2,3-三氯苯	6.6
1,2-二氯苯	8.7	1,2,4-三氯苯	6.4
1,3-二氯苯	9.1	1,1,1-三氯乙烷	3.3
1,4-二氯苯	9.8	1,1,2-三氯乙烷	9.8
二氯二氟甲烷	11.8	三氯乙烯	5.9
二氯乙烷	9.0	三氯氟甲烷	3.3
1,2-二氯乙烷	7.9	1,2,4-三甲基苯	5.8
1,1-二氯乙烯	11.2	1,3,5-三甲基苯	5.6
顺-1,2-二氯乙烯	8.3	氯乙烯	4.7
反-1,2-二氯乙烯	5.5	邻二甲苯	11.1
1,2-二氯丙烷	9.4	间/对二甲苯	9.6
符合性限制	< 20%	符合性限制	< 20%

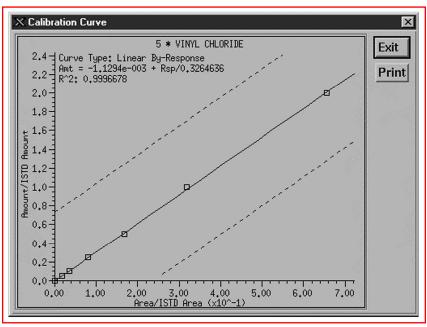


图 2. 氯乙烯的线性回归曲线。

表 5 列出使用 2.5-µg/L 标准样品 从八 (8) 次重复分析中所获得的目 标分析物的准确性和精确度数据。所 有化合物所显示出的准确性和精确度 都符合要求。

检出限

重复分析 1.0-μg/L 标准溶液五 (5) 次以确定方法检出限 (MDL)。如 524.2 方法中所述,使用以下公式计 算检出限:

 $MDL = S t_{(n-1, alpha = 0.99)}$

其中:

 $t_{(n-1, alpha = 0.99)}$ = 具有 n-1 度灵活性的 99% 可信度的 t 值,

n = 重复次数,且

S = 重复分析的标准偏差。

表 5: 八次重复分析 2.5 µg/L 标准样品的准确性和精确度结果

推确性和精确度数据				
化合物	平均值 (µg/L)	回收百分比	% RSD 3.3	
苯	2.26	90.2		
臭苯	2.59	103.4	10.0	
臭氯甲烷	2.18	87.3	3.2	
臭二氯甲烷	2.31	92.3	3.0	
三溴甲烷	2.20	87.9	7.3	
臭代甲烷	2.94	117.6	8.9	
E丁基苯	2.57	102.7	10.0	
中丁基苯	2.09	83.4	9.6	
双丁基苯	2.57	102.6	4.7	
四氯化碳	2.80	112.1	2.7	
貳苯	2.37	94.8	10.0	
貳乙烷	2.74	109.6	5.1	
夏仿	2.45	97.9	1.2	
貳甲烷	2.28	91.2	8.3	
2-氯甲苯	2.39	95.6	10.6	
-氯甲苯 -油原田烷	2.51	100.4	10.2	
二溴氯甲烷	2.57	102.8	8.5	
二溴甲烷	2.62	104.6	2.6	
,2-二氯苯	2.55	102.1	10.7	
,3-二氯苯	2.58	103.0	10.1	
,4-二氯苯 	2.57	103.0 92.8	10.5	
二氯二氟甲烷	2.32	. —	10.5	
二氯乙烷	2.89	115.6	4.2	
,2-二氯乙烷 ,1-二氯乙烯	2.82 2.70	112.6 107.8	3.7 5.2	
,1	2.70	107.8	2.3	
呗-1,2-—录乙烯 攵-1,2-二氯乙烯	2.87	98.0	1.7	
,2-二氯乙烯 ,2-二氯丙烷	2.98	119.3	3.1	
,3-二氯丙烷 ,3-二氯丙烷	2.76	89.3	3.3	
,3- _二	2.23	94.4	8.4	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.31	92.3	2.3	
顶-1,3-二氯丙烯	2.11	84.2	5.I	
页-1,3-二氯丙烯 页-1,3-二氯丙烯	2.18	87.1	4.4	
乙苯	2.55	101.9	7.4	
六氯丁二烯	2.57	102.8	14.0	
之。 异丙苯	2.08	83.3	9.6	
异丙基甲苯	2.66	106.2	5.9	
二氯甲烷	2.26	90.4	3.3	
- 本(1 /9ti	2.74	109.5	4.0	
E丙基苯	2.46	98.4	8.7	
苯乙烯	2.25	89.8	8.7	
,1,1,2-四氯乙烷	2.58	103.0	7.1	
,1,2,2-四氯乙烷	2.55	102.2	5.0	
山 氯乙烯	2.58	103.3	3.3	
甲苯	2.82	112.9	2.5	
,2,3-三氯苯	2.53	101.3	10.2	
,2,4-三氯苯	2.69	107.6	9.9	
,1,1-三氯乙烷	2.54	101.7	2.0	
,1,2-三氯乙烷	2.54	101.7	2.7	
三氯乙烯	2.57	102.7	1.1	
三氯氟甲烷	2.67	106.6	8.9	
,2,4-三甲基苯	2.25	90.0	10.6	
,3,5-三甲基苯	2.11	84.5	10.0	
貳乙烯	2.63	105.2	2.6	
第二甲苯	2.51	100.3	6.3	
旬/对二甲苯*	4.89	97.8	12.5	
要求标准		80 - 120 %	< 20%	

表 6 列出使用相同的条件和在此引用的 计算方法所获得的所有已列出目标分析 物的 MDL。使用在 524.2 方法中所引 用的大口径毛细管柱获取检出限, 范围 为 0.019 - 1.6 μg/L。

还列出国家主要饮用水标准 (2) 中 所引用的最大污染级别 (MCL) 以进 行比较。MDL 完全低于 MCL,并 顺利地与在美国 EPA 方法中所列出 的指导限制进行了比较。

检出限可因不同因素(例如所用的精 确分析条件、分析技术和用于测定的 标准样品的浓度)而有很大差别。

表 6: 方法检出限和美国最大污染级别

∤析物	MDL	MCL	分析物	MDL	MCL
	(ppb)	(ppb)		(ppb)	(ppb)
ż	0.21	5.	I,3-二氯丙烷	0.20	
泉苯	0.35		2,2-二氯丙烷	0.43	
臭氯甲烷	0.29		1,1-二氯丙烯	0.21	
見二氯甲烷*	0.24	100.	顺-1,3-二氯丙烯	0.13	
三溴甲烷*	0.59	100.	反-1,3-二氯丙烯	0.16	
具代甲烷	0.49		乙苯	0.34	700.
三丁基苯	0.29		六氯丁二烯	0.38	
中丁基苯	0.44		异丙苯	0.47	
双丁基苯	0.33		4-异丙基甲苯	0.27	
国氯化碳	0.37	5.	二氯甲烷	0.23	5.
(苯	0.44	100.	萘	0.39	
〔乙烷	0.28		正丙基苯	0.32	
〔仿*	0.19	100.	苯乙烯	0.43	100.
[甲烷	0.50		1,1,1,2-四氯乙烷	0.41	
-氯甲苯	0.62		1,1,2,2-四氯乙烷	0.57	
-氯甲苯	0.41		四氯乙烯	0.20	5.
二溴氯甲烷*	0.53	100.	甲苯	0.10	100.
[溴甲烷	0.36		1,2,3-三氯苯	0.40	
2-二氯苯	0.31	600.	1,2,4-三氯苯	0.38	70.
3-二氯苯	0.29		1,1,1-三氯乙烷	0.25	200.
4-二氯苯	0.30	75.	1,1,2-三氯乙烷	0.33	5.
二氯二氟甲烷	0.77		三氯乙烯	0.22	5.
二氯乙烷	0.23	5.	三氯氟甲烷	0.35	
2-二氯乙烷	0.19		1,2,4-三甲基苯	0.55	
I-二氯乙烯	0.41	7.	1,3,5-三甲基苯	0.51	
〔-1,2-二氯乙烯	0.28	70	氯乙烯	0.50	2.
5-1,2-二氯乙烯	0.14	100.	邻二甲苯	0.37	
2-二氯丙烷	0.20	5.	间/对二甲苯	0.66	

结论

对于居民的健康和安全来说,准确测定饮 用水中挥发性有机化合物是非常重要的。 分析过程非常具有挑战性,并且需要使用 气相色谱/质谱联用仪系统的方法验证) 可靠的方法才能获得最佳结果。本文所引 变得非常突出。 用的调谐、校正、方法检出限、准确性和

精确度数据均符合美国 EPA 方法中所列 出的相应要求, 并可用来使某些更严格的 标准(这些标准适用于使用 TurboMass

参考文献

- "Measurement of Purgeable
 Organic Compounds in Water By
 Capillary Column Gas Chromatog raphy/Mass Spectrometry,"
 Method # 524.2, Revision 4.1,
 Methods for the Determination of
 Organic Compounds in Drinking
 Water, Supplement III, EPA 600/R-95/131, August 1995。
- "Maximum Contaminant Levels for Organic Contaminants," Code of Federal Regulations, 40 CFR Ch. I (7–1–98 Edition), Part 141.61.

致谢

特别感谢密西西比州卫生部公共卫生试验室的 Sami Malone (Jackson, MS USA)。

可访问我们的网站,网址为 www.perkinelmer.com

PerkinElmer Instruments 761 Main Avenue Norwalk, CT 06859-0010 USA 电话: 800-762-4000 或 (+1) 203-762-4000

传真: (+1) 203-762-4228

PerkinElmer 是珀金埃尔默有限公司的商标。 TurboMass 是珀金埃尔默仪器有限责任公司的商标。 Swagelok 是 Swagelok Co. 的注册商标。

