

应 用 报 告

Gas Chromatography/ Mass Spectrometry

作者: 黄招发 PerkinElmer Inc.

Shanghai, China

HJ 642 土壤和沉积物挥发性有机物的测定—— 顶空 - 气相色谱 - 质谱法

简介

挥发性有机物 (VOCs) 是指沸点在 50-250°C 范围内的一系列化合物, 因其广泛应用于化工原料和有机溶

剂中,因此在自然界越来越多地检测到 VOCs 的存在。VOCs 对人体健康有巨大影响,许多具有致突变、致癌和致畸效应,或者具有难闻气味,而且非常难以降解,危害很大。因此对 VOCs 进行检测和含量控制是必须的。

中国环境保护标准 HJ 642-2013 规定了测定土壤和沉积物中挥发性有机物 (VOCs)的顶空 - 气相色谱质谱法。该标准适用于土壤和沉积物中 36 种挥发性有机物的测定。该标准的执行不仅需要实验室具有样品制备和处理能力,也需要仪器设备具有足够的稳定性和灵敏度。本文使用 PerkinElmer TurboMatrix HS40 联用 Clarus SQ 8 GC/MS 测定土壤中 VOCs。TurboMatrix HS40 具有惰性的样品传输管路和优异的气体控制模块,具备卓越的稳定性,其专利设计的压力平衡时间进样技术保证了仪器的高灵敏度,配备 Clarus SQ 8 GC/MS 均符合HJ 624-2013 方法设定的性能标准。文中所示 VOCs 的线性,结果重现性,回收率和检出限,表明该仪器配置具有优异的检测性能,完全可以满足方法需要。

材料与方法

仪器

本 文 使 用 PerkinElmer Clarus SQ8 GC-MS (El 源) 与 表 2. 顶空、气相色谱仪及质谱仪的操作条件 TurboMatrix HS40 联用分析。

试剂

实验用水: 纯水机设备制备用水, 经空白实验确认无干扰。 甲醇:色谱纯级别,使用前经空白实验确认无干扰。

氯化钠: 优级纯

磷酸: 优级纯

基体改进剂: 250 mL 实验用水, 滴加几滴磷酸, 调节 PH 值≤2。加入90g 氯化钠。溶解并混匀。

标准使用液 (37 种): 直接购买浓度为 1000 μg/ml 的 混标, 使用前用甲醇稀释至 100 μg/ml。

内标使用液 (3 种): 选用氟苯, 氯苯-d5 和 1,4- 二氯苯-d4 做为内标物,配制浓度为 250 μ q/ml,溶剂为甲醇。

替代物: 4- 溴氟苯 (BFB) 和甲苯 -d8, 浓度均为 100 μ q/ml, 溶剂为甲醇。

石英砂:外购,使用前确认无干扰。

校准曲线的配制

取5个顶空瓶,分别称取2.0g石英砂于顶空瓶中,各加 入 5 mL 基体改进剂, 再分别加入 0.5, 1, 2, 5, 10 μL 的 100 μ q/mL 挥发性有机物混标, 0.5, 1, 2, 5, 10 μL的 100 μg/mL 替代物, 2.0 μL的 250 μg/mL的内标 使用液,加盖密封,得到的初始校准曲线见表 1。

表 1. 校准曲线浓度

	1	2	3	4	5
标准品浓度 (μg/kg)	25.0	50.0	100.0	250.0	500.0
替代物浓度 (μg/kg)	25.0	50.0	100.0	250.0	500.0
	250.0	250.0	250.0	250.0	250.0

实验条件

顶空、气相色谱仪及质谱仪的操作条件见表 2 所示。

HS-40						
炉温 (°C)	70	平衡时间 (min)	50	传输线压 力(psi)	22	
取样针 (℃)	95	加压时间 (min)	1.5	瓶压力 (psi)	30	
	110	进样时间 (min)	0.05			

(°C)	110	(min)	0.05			
Clarus 680 气相色谱参数						
色谱柱		Elite-624 (50m*0.32mn	n*1.8um)		
载气 (ml/min)		1				
进样口 (℃)			120			
	温度 (℃)	时间 (min)	升温速度	(°C/min)	
	35	3		4		
升温程序	120	0		8		
	180	0		15		
	220	10)			
	Cla	rus SQ8 T 尼	质谱条件 参	数		
传输线温 度 (℃)			250			
离子源 (℃)	230					
工作方式	Scan and SIR					
溶剂延迟 (min)	3					

结果

根据表 2 的仪器运行条件,得到 37 种 VOCs 总离子流色谱图和选择离子流图,如图 1 所示。

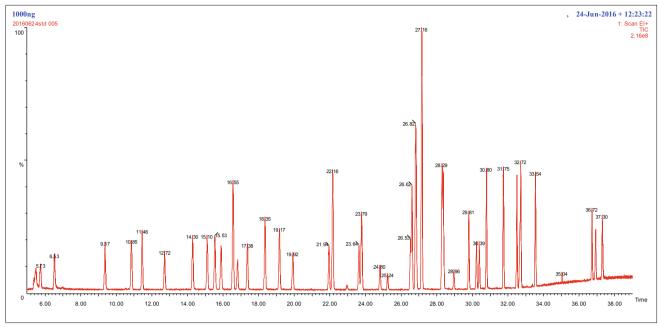


图 1. 37 种 VOCs 的离子流色谱图

表 3 所列为各组分的出峰顺序,保留时间和定量离子。

表 3. 各组分的出峰顺序,保留时间和定量离子

序号	化合物名称	CAS 号	保留时间 (min)	定量离子
1	氯乙烯	75-01-4	5.731	62
2	1,1- 二氯乙烯	75-35-4	9.351	96
3	二氯甲烷	75-09-2	10.841	84
4	反 -1,2- 二氯乙烯	156-60-5	11.451	96
5	1,1- 二氯乙烷	75-34-3	12.711	63
6	顺 -1,2- 二氯乙烯	156-59-2	14.283	96
7	氯仿	67-66-3	15.106	83
8	1,1,1- 三氯乙烷	71-55-6	15.538	97
9	四氯化碳	56-23-5	15.882	117
10	1,2- 二氯乙烷	107-06-2	16.809	62
11	苯	71-43-2	16.553	78
IS1	氟苯	462-06-6	17.30	96
12	三氯乙烯	79-01-6	18.35	95
13	1,2- 二氯丙烷	78-87-5	19.165	63
14	一溴二氯甲烷	75-27-4	19.911	83
Surr	甲苯 -D8(Surr)	2037-26-5	21.944	98
15	甲苯	108-88-3	22.154	91
16	1,1,2- 三氯乙烷	79-00-5	23.631	83
17	四氯乙烯	127-18-4	23.776	166
18	二溴氯甲烷	124-48-1	24.809	129
19	1,2- 二溴乙烷	106-93-4	25.236	107
IS2	氯苯 -D5(IS2)	3114-55-4	26.498	117
20	氯苯	108-90-7	26.609	112

21	乙苯	100-41-4	26.813	91
22	1,1,1,2- 四氯乙烷	630-20-6	26.848	131
23	间,对 - 二甲苯	108-38-3/106-42-3	27.157	106
24	邻 - 二甲苯	95-47-6	28.292	106
25	苯乙烯	100-42-5	28.365	104
26	溴仿	75-25-2	28.958	173
Surr	4- 溴氟苯 (Surr)	460-00-4	29.801	95
27	1,1,2,2- 四氯乙烷	79-34-5	30.229	83
28	1,2,3- 三氯丙烷	96-18-4	30.392	75
29	1,3,5- 三甲基苯	108-67-8	30.793	105
30	1,2,4- 三甲基苯	95-63-6	31.742	105
31	1,3- 二氯苯	541-73-1	32.498	146
IS3	1,4- 二氯苯 -D4(IS3)	3855-85-1	32.643	152
32	1,4- 二氯苯	106-46-7	32.717	146
33	1,2- 二氯苯	95-50-1	33.547	146
34	1,2,4- 三氯苯	120-82-1	36.727	180
35	六氯丁二烯	87-68-3	36.927	225
36	萘	91-20-3	37.296	128

使用表 1 所列校准样品依次进样,得到各组分的标准曲线和线性回归系数如下表 4 所示。

表 4. 各组分标准曲线和线性回归系数

÷	化人物农物	Liearity			
序号	化合物名称	calibration curve	r²		
1	氯乙烯	0.2675X-8.2806	0.9995		
2	1,1- 二氯乙烯	0.1948X-6.672	0.9994		
3	二氯甲烷	0.2182X-4.3497	0.9991		
4	反 -1,2- 二氯乙烯	0.2143X-5.3891	0.9994		
5	1,1- 二氯乙烷	0.3642X-7.2780	0.9997		
6	顺 -1,2- 二氯乙烯	0.2226X-4.6008	0.9992		
7	氯仿	0.3611X-5.2598	0.9997		
8	1,1,1- 三氯乙烷	0.2911X-8.9176	0.9997		
9	四氯化碳	0.2570X-8.8008	0.9998		
10	1,2- 二氯乙烷	0.1959X-3.7388	0.9991		
11	苯	1.0065X-4.5943	0.9998		
12	三氯乙烯	0.2162X-4.8155	0.9995		
13	1,2- 二氯丙烷	0.2357X-5.4219	0.9995		
14	一溴二氯甲烷	0.1956X-4.8842	0.9994		
Surr	甲苯 -D8	0.2786x-1.7432	0.999		
15	甲苯	0.7943X+1.7986	0.9984		
16	1,1,2- 三氯乙烷	0.1253X-3.4926	0.9985		
17	四氯乙烯	0.1895X-3.1960	0.9996		

18	二溴氯甲烷	0.1171X-4.5257	0.9992
19	1,2- 二溴乙烷	0.1074X-4.1482	0.9991
20	氯苯	0.7983X-5.7920	0.9999
21	乙苯	1.3471X-11.0651	0.9997
22	1,1,1,2- 四氯乙烷	0.2892X-12.2255	0.9996
23	间,对-二甲苯	0.9678X-14.4938	0.9993
24	邻 - 二甲苯	0.4476X-9.6751	0.9996
25	苯乙烯	0.6339X-11.0403	0.9987
26	溴仿	0.1132X-7.7739	0.9987
Surr	4- 溴氟苯	0.2874X-5.2776	0.9992
27	1,1,2,2- 四氯乙烷	0.3646X-7.1050	0.9999
28	1,2,3- 三氯丙烷	0.3104X-8.1093	0.9998
29	1,3,5- 三甲基苯	3.0164X-26.6019	0.9987
30	1,2,4- 三甲基苯	2.5894X-19.6923	0.9995
31	1,3- 二氯苯	1.4837X-14.1402	0.9996
32	1,4- 二氯苯	1.3404X-1.4877	0.9991
33	1,2- 二氯苯	1.3460X-13.2789	0.9997
34	1,2,4- 三氯苯	0.7417X-29.6262	0.9954
35	六氯丁二烯	0.4066x-24.1479	0.995
36	萘	2.4258X-41.8979	0.9991

各组分的回归系数大于 0.995, 显示了方法良好的线性。

表 5 所列结果包括重现性(RSD)、检出限(MDL)、测定下限及回收率。检出限及测定下限的测定参照 HJ 168-2010《环境监测分析方法标准制修订技术导则》。评估检出限时采用空白加标(石英砂),加标量为 5 μ g(浓度为 2.5 μ g/kg),测定下限为 4 倍检出限。RSD 为向 2 g 土壤 or 石英砂中加入 5 mL 基体改进剂,并分别加入 2 μ L 和 5 μ L 的 100 ppm 标准品和替代物、2.0 μ L 的 250 μ g/mL 的内标使用液,得到标准品的浓度为 100 μ g/kg,250 μ g/kg。连续测定六次的相对标准偏差。回收率为向 2 g 土壤中,加入 5 mL 基体改进剂,并分别加入 2 μ L 和 5 μ L 的 100 ppm 标准品和替代物、2.0 μ L 的 250 μ g/mL 的内标使用液时得到的回收率。

表 5. 重现性、检出限、测定下限和回收率

		RSD%	(n=10)	MDL	测定下限	回收	率 %
序号	化合物名称	100 μ g/kg	250 μ g/kg	μ g/kg	μ g/kg	100 μ g/kg	250 μ g/kg
1	氯乙烯	2.08	3.25	0.97	3.86	102.72	100.91
2	1,1- 二氯乙烯	3.18	3.27	0.85	3.40	107.3	102.32
3	二氯甲烷	3.53	4.22	1.11	4.44	92.72	97.71
4	反 -1,2- 二氯乙烯	2.51	3.30	0.58	2.34	104.81	102.19
5	1,1- 二氯乙烷	2.79	4.57	0.84	3.35	100.95	100.19
6	顺 -1,2- 二氯乙烯	2.78	3.44	0.62	2.47	100.25	99.85
7	氯仿	3.32	4.63	0.80	3.18	98.82	99.90
8	1,1,1- 三氯乙烷	3.22	4.83	0.70	2.81	108.86	105.22
9	四氯化碳	3.12	4.66	0.79	3.14	106.61	105.88
10	1,2- 二氯乙烷	3.47	4.37	1.09	4.36	87.95	99.15
11	苯	2.06	3.03	0.54	2.17	100.60	101.81
12	三氯乙烯	2.78	3.39	1.07	4.28	108.49	105.65
13	1,2- 二氯丙烷	3.42	3.88	0.92	3.66	100.22	100.28
14	一溴二氯甲烷	3.84	4.06	1.00	4.01	95.59	98.82
Surr	甲苯 -D8	8.76	7.87	-	-	93.23	105.18
15	甲苯	1.67	2.20	0.75	2.98	106.71	106.52
16	1,1,2- 三氯乙烷	4.58	3.63	1.16	4.66	89.55	96.16
17	四氯乙烯	2.86	3.01	0.95	3.79	99.98	108.15
18	二溴氯甲烷	4.53	3.24	1.24	4.95	90.03	97.53
19	1,2- 二溴乙烷	4.93	3.01	1.16	4.64	86.48	94.58
20	氯苯	2.90	2.15	0.77	3.07	101.08	99.14
21	乙苯	1.52	2.05	0.92	3.68	105.97	107.52
22	1,1,1,2- 四氯乙烷	3.63	4.31	0.60	2.40	102.38	95.60
23	间,对-二甲苯	1.56	2.07	0.76	3.02	103.51	107.39
24	邻 - 二甲苯	1.59	1.83	0.82	3.28	110.14	109.00
25	苯乙烯	1.79	1.79	0.73	2.91	97.83	98.30
26	溴仿	7.22	3.54	1.24	4.95	86.96	92.51
Surr	4- 溴氟苯	4.98	6.14	-	-	97.70	102.00
27	1,1,2,2- 四氯乙烷	3.08	2.58	1.08	4.30	75.69	91.49
28	1,2,3- 三氯丙烷	3.17	2.67	1.02	4.06	74.92	89.56
29	1,3,5- 三甲基苯	1.55	3.34	0.79	3.18	108.75	103.70
30	1,2,4- 三甲基苯	1.48	2.89	0.84	3.36	109.87	102.42
31	1,3- 二氯苯	2.06	2.88	0.71	2.85	100.52	93.09
32	1,4- 二氯苯	1.91	2.55	0.91	3.63	99.47	92.63
33	1,2- 二氯苯	2.25	2.78	0.89	3.57	93.70	89.50
34	1,2,4- 三氯苯	2.35	7.45	1.18	4.71	104.24	108.82
35	六氯丁二烯	3.40	8.94	1.17	4.69	117.51	106.41
36	萘	1.90	2.47	2.07	8.27	93.18	102.35

如上表所示, 100 μg/kg和 250 μg/kg浓度的加标样品 RSD% 范围分别为 1.48-8.76% 和 1.79-8.94%, 在标准 (HJ642-2013) 涵盖的范围 1.1-15% 之内。

加标回收范围分别为74.92-117.51%和89.56-106.41%, 优于标准 (HJ642-2013) 涵盖的回收率范围 (100 μg/kg 回收率为 65.2-134%, 和 250 μg/kg 回 收率为 73.3-107%)。

根据本文实验条件得到的检出限为 0.54 μ q/kg~2.07 μg/kg, 测定下限为 2.17 μg/kg~8.27 μg/kg。优于标 准 (HJ642-2013) 给出的方法检出限为 0.8-4 μg/kg, 测定下限为 3.2-14 μg/kg。

结论

实验结果表明使用 PerkinElmer TurboMatrix HS40 联 用 Clarus SQ 8 GC/MS 测定土壤中 VOCs 很容易实现 HJ642-2013 方法所设定的性能标准。本文建立的方法 具有很好的准确度, 精密度和检出限, 该仪器配置具有 优异的检测性能,完全可以满足方法需要。

珀金埃尔默企业管理(上海)有限公司

地址: 上海张江高科技园区张衡路1670号

邮编: 201203 电话: 021-60645888 传真: 021-60645999 www.perkinelmer.com.cn

