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ABSTRACT

 Previously, we reported a new online capillary isoelectric focusing-mass 

spectrometry (CIEF-MS) method for intact monoclonal antibody (mAb) charge 

variant analysis using an electrokinetically pumped sheath-flow nanospray ion 

source on a time-of-flight (TOF) MS with a pressure-assisted chemical 

mobilization. The direct online CIEF-MS method exhibited excellent charge 

variants resolution conforming to those of imaged CIEF-UV (iCIEF-UV). 

However, for complex mAbs, CIEF-MS spectra of the intact charge variant 

peaks may be overly convoluted to be effectively interpreted. In the current 

study, we implemented a middle-up approach to enhance the capability of the 

CIEF-MS method for characterizing complex mAbs charge variants by reducing 

sample complexity. To demonstrate such a strategy, we fragmented cetuximab 

through IdeS enzymatic cleavage and dithiothreitol (DTT) reduction. For the first 

time, online CIEF-MS resolved the complex charge variants of cetuximab at 

subunit level, corroborating the profiles obtained by iCIEF-UV. Furthermore, 

high resolution TOF mass spectra with high mass accuracy were obtained for 

the eight charge variants separated by CIEF-MS after IdeS cleavage, and for 

the eleven charge variants after IdeS digestion with subsequent DTT reduction. 

In-depth analyses revealed the identities of all charge variants, and pinpointed 

the causes of charge heterogeneity, which are in accord with those reported in 

the literature. The main sources of charge heterogeneity of cetuximab were 

identified as terminal lysine on the Fc domain (up to one on each single chain 

Fc), glycolyl neuraminic acid residues on the Fd’ domain (up to two on each 

Fd’), and likely several deamidation species on the Fd’ domain. No charge 

heterogeneity contribution was found from light chain. The in-depth 
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characterization of complex charge variants for cetuximab demonstrates the 

remarkable capability of this middle-up CIEF-MS approach. This novel workflow 

holds great potential for detecting and elucidating charge variants to help 

understand protein with complex charge heterogeneity.  
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INTRODUCTION 

Charge heterogeneity is an important quality attribute of protein 

therapeutics. Charge variants of protein therapeutics are commonly analyzed 

by CIEF, capillary zone electrophoresis (CZE), and ion exchange 

chromatography (IEX) methods with UV detection1-3. Enabling online MS 

detection for charge variant analysis is an effective way to characterize the 

underlying species of each charge variant and gain insightful information about 

the source of charge variants, which has been an area of great interest 4-9. In 

this regard, we recently developed a novel direct online CIEF-MS technique for 

recombinant mAb charge variant analysis 5. The high resolution and high 

sensitivity of this method were demonstrated by its application in characterizing 

the charge variants of several marketed mAbs at intact level. As we continue to 

successfully implement this technique for analyzing and understanding charge 

heterogeneity of therapeutic mAbs, we found that, in several cases, despite the 

excellent pI based resolution of our CIEF-MS method, characterizing charge 

variants at the intact level for complex mAbs can be very challenging depending 

on the size and complexity of the intact molecules. Not only is detecting a 

deamidation species with a unit mass shift from a ~150 kDa mAb likely 

exceeding the performance specifications of commonplace mass 

spectrometers, but also heavy glycosylation can overwhelm the resolving 

power of mass spectrometry with overlapping peaks in the mass spectra. In 

addition, with the evolving biologic therapeutic modalities and versatile new 

protein engineering strategies, many therapeutic biologics have complex 

charge variant profiles, and present real challenges for characterization at intact 

level.
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While advances in MS instrumentation are being made constantly to 

strive for high resolution, an amenable and practical approach for the status 

quo is selectively reducing sample complexity to facilitate comprehensive CIEF-

MS analysis. These include simplifying the mAb molecules by selectively 

removing certain modifications or decreasing size of the molecules by 

fragmenting mAbs to subunits 10,11. 

For probing the source of charge variants, carboxypeptidase B is 

commonly used to act upon basic amino acids, e.g. for C-terminal lysine 

removal. Sialidase is often used to clean up N-glycolyl neuraminic acid 11,12. 

While Peptide-N-glycosidase F (PNGase F) is the most commonly used 

glycosidase for releasing N-glycans, endoglycosidases EndoS and EndoS2 

cleave Fc N-glycans with different glycoform selectivity 13. These sample 

treatments can selectively reduce the complexity of charge heterogeneity, thus 

facilitating data interpretation for charge variant characterization. Profile 

comparison before and after treatments may be used to validate the presence 

or absence of charge variants associated with these specific modifications 12. 

For decreasing molecular size, besides chemical reduction of disulfide 

bond between heavy chains (HC) and light chains (LC) of mAbs, limited 

proteolysis, such as papain14, lysyl endopeptidase (Lys-C)15, and recombinantly 

modified SpeB 16, have been used to digest and fragment mAb molecules. 

Particularly, immunoglobulin-degrading enzyme of Streptococcus pyogenes 

(IdeS) has gained popularity as a reliable, specific, and efficient enzyme 17,18. 

IdeS cleaves IgG at a single site on heavy chains below the hinge region 

through a simple and robust digestion procedure, yielding one antigen-binding 

F(ab’)2 domain and two single chain (scFc) subunits. The F(ab’)2 fragment can 
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be further reduced by DTT or tris(2-carboxyethyl)phosphine (TCEP) to produce 

two sets of antibody subunits of LC and Fd’. The resulting analysis based on 

these relatively large fragments of protein are often termed as middle-down or 

middle-up approaches 19-21. Being promising in enhancing chromatographic 

separation and MS resolution, such workflow has been widely used in 

HPLC/MS analysis to monitor quality attributes for characterizing multiple, 

specific post-translational modifications (PTMs) of mAbs including 

deamindation14, oxidation22,23, C-terminal or N-terminal variants24,25, 

isomerization of aspartic acid26, and glycosylation27-30. Related work was 

reported for charge variants of mAb fragments after limited proteolysis digestion 

for profile comparisons or specific PTM investigation using IEX and IEX 

fractionation followed by HPLC/MS analysis15,31-34. An IEX charge variant 

method for papain digested mAb was validated for charge heterogeneity at mAb 

subunits level 35. A charge variant screen workflow was also reported on seven 

mAbs based on comparative analyses of intact IgGs versus F(ab’)2 and scFc 

from IdeS digestion using IEX with UV detection36. As pointed out by the 

authors 36, however, IEX fractionation and offline HPLC/MS analysis is much 

needed for such screening methods due to the difficulty to identify the acidic 

and basic variants observed by UV. In addition, CZE-MS has been reported 

using middle-up approach for charge variant characterization of mAbs37,38. Few 

CIEF analysis with middle-up approach has been reported for comprehensive 

charge variant characterization of mAbs 12,16,39,40. This is partially due to the 

challenging that limited proteolysis and reduction treatments generate multiple 

components for each intact variant, resulting in complex mixture that might be 

difficult to resolve and subject to peak overlapping. Without MS, overlapped 
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CIEF-UV species cannot be detected, and the peak assignments based on UV 

are usually speculative and ambiguous. As a result, charge variant 

characterization based on UV detection does not benefit from multiple mAb 

fragments and their respective variants. With a MS detector, on the other hand, 

middle-up approaches could significantly benefit MS analysis in terms of 

enhancing resolution, increasing sensitivity with high ionization efficiency, and 

simplifying data interpretation. The realization of an effective online CIEF-MS 

technique5 that combines the high-resolution capability of CIEF and the 

unparalleled characterization power of MS enables a novel and highly effective 

workflow for charge variants analysis at the subunit level for complex and highly 

glycosylated mAbs.

Cetuximab is a marketed mAb with complex glycoforms. It contains two 

sites of glycosylation on the HC: one is in the Fc domain on Asn 299 and the 

second is located in the F(ab’)2 domain on Asn 88 41. Its complex glycosylation 

leads to high level of heterogeneities, and intensive characterization efforts 

have been made with various approaches 9,11,13,28,42-47. Offline capillary zone 

electrophoresis MS coupling has been used to analyze IdeS treated cetuximab, 

and six charge variants were characterized for scFc and F(ab’)2 fragments 38,48. 

Hyphenation of pH gradient IEX with MS using volatile and low ionic strength 

buffers as mobile phases has been reported for the charge variants separation 

of intact cetuximab 9. IEX-UV chromatogram was presented, but no detailed 

MS data was given9. We previously reported the CIEF-MS separation of 

cetuximab at the intact level5. In that study, nine charge variants were resolved 

using our CIEF-MS method that correlated well with iCIEF-UV results. However, 

the complex glycosylation profile of cetuximab prevented effective mass 
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spectral deconvolution for the resolved intact charge variant peaks5.

In this study, we investigated a middle-up approach by reducing sample 

complexity through enzymatic cleavage and chemical reduction to achieve 

comprehensive characterization of cetuximab charge heterogeneity. By 

separating charge variants at the subunit level using CIEF and attaining mass 

spectra with sufficient resolution for each fragmented mAb and its variant peaks, 

we aim to expand the capacity of our CIEF-MS technology by the demonstration 

of in-depth deciphering of the complex charge variants of cetuximab. 

We believe that this novel work flow offers new pathway for charge 

variants analysis of protein therapeutics with complex charge variant profiles 

including heavily glycosylated mAbs and next-generation therapeutics, such as 

antibody-drug conjugates (ADCs) and complex Fc-fusion proteins.

EXPERIMENTAL SECTION

Reagents. Pharmalyte 3-10 (GE Healthcare), glycerol, urea, ammonium 

acetate, and 1 M DTT solution in water were purchased from Sigma Aldrich (St. 

Louis, MO). HPLC-MS grade reagents, including water, acetic acid, formic acid, 

ammonium hydroxide, and acetonitrile were also obtained from Sigma Aldrich. 

IdeS protease was purchased from Promega Corporation (Madison, WI). 

Cetuximab was purchased from Komtur Pharmaceuticals (Edgewater, NJ). 

Online CIEF-MS. An Agilent 6224 TOF mass spectrometer was coupled 

with the Agilent 7100 CE (Agilent Technologies, Santa Clara, CA) using an 

EMASS-II CE-MS ion source (CMP Scientific Corp., Brooklyn, NY). The TOF 

fragmentor voltage (FV) was set at 380/200V for IdeS digested sample and 

200V for IdeS plus reduction treated sample. The skimmer voltage was set at 
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65V and OCT 1RF Vpp was set at 750V. The drying gas temperature was set 

at 350C with a gas flow at 6 L/min. An ionization voltage was set at 2 kV using 

the external high voltage power supply that comes with EMASS-II ion source. 

The electrospray emitters (1.0 mm O.D., 0.75 mm I.D., 30 µm tip size) and 

neutral coating PS1 capillaries (75 cm in length, 360 µm O.D., 50 µm I.D.) were 

purchased from CMP. The catholyte was 0.2 N ammonium hydroxide aqueous 

solution, and the anolyte was 1% formic acid, both containing 15% glycerol. 

Sheath liquid was 20% acetic acid with 25% acetonitrile. Protein samples (~0.5 

mg/mL) were prepared in 1.5% Pharmalyte 3-10 with 20% glycerol. The 

catholyte solution was injected under 950 mbar for 10 s, which was followed by 

sample injection under 950 mbar for 75 s. CIEF separation was performed with 

a normal polarity voltage at 250 V/cm and a 10 mbar pressure applied on the 

capillary inlet. Other detailed CIEF-MS conditions were described previosly.5 

Protein sample treatment. For IdeS digestion, the cetuximab sample was 

digested by IdeS at 37C for 30 minutes using the protocol recommended by 

the manufacture. For IdeS digestion with subsequent reduction, the sample was 

first digested by IdeS at 37C for 30 minutes, then reduced by 50 mM DDT at 

37C for additional 30 minutes. Samples after digestion and reduction treatment 

were desalted and buffer exchanged to 10 mM ammonium acetate (pH 6.5) 

using Amicon Ultra-10K centrifugal filter units (EMD Millipore, Billerica, MA) 

prior to CIEF analyses. 

Data analysis. The CIEF-MS data acquisition and analysis were performed 

using Agilent Mass Hunter software. MS spectra were deconvoluted using 

Agilent Bioconfirm software (B.07.00).

Imaged CIEF-UV. The iCIEF-UV analyses were performed on an iCE3 unit 
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equipped with an Alcott 720 autosampler (ProteinSimple, San Jose, CA). 

Experimental details were described previously.5 In brief, fluorocarbon-coated 

capillary cartridges were used with 80 mM phosphoric acid as the anolyte and 

100 mM sodium hydroxide as the catholyte. Sample buffer contained 0.35% 

methyl cellulose, 4% Pharmalyte 3-10, and 2 M urea. Focusing was conducted 

at 1.5 kV for 1 min, followed by 3.0 kV for 8 min. 

RESULTS AND DISCUSSION

Cetuximab has significant microheterogeneity with complex glycosylation on 

both Fc and Fab regions. As reported in our previous work, although we 

achieved CIEF-MS separation of nine charge variants of intact cetuximab 

corroborating the charge variants profile obtained by iCIEF-UV, heavy 

glycosylation of cetuximab with sialic acids made the mass spectrum of each 

intact variant difficult to be sufficiently deconvoluted. We were not able to obtain 

informative MS characterization of the molecule5. In order to decipher the 

charge heterogeneity of cetuximab, we developed a novel middle-up CIEF-MS 

work flow by simplifying charge variants at molecular level to limit them to one 

set of glycosylation site per variant. In our study, cetuximab was digested with 

IdeS protease that cleaved the IgG mAb into three units: two scFc and one 

F(ab’)2 fragments. The resulting charge variants were then resolved by CIEF 

and analyzed based on their MS data. To achieve in-depth characterization, the 

IdeS treated sample was further reduced to generate LC and Fd’ fragments 

from F(ab’)2 followed by CIEF separation and online MS analysis.

Figure 1 shows the comparison of CIEF-MS and iCIEF-UV profiles of 

cetuximab at intact5 and subunits levels. Consistency between charge variant 
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profiles from these two techniques demonstrates that our CIEF-MS method has 

successfully retained the pI based separation mechanism. Nine charge variants 

are observed at intact level5. Eight charge variants are detected after IdeS 

digestion, and eleven charge variants are separated after IdeS plus reduction 

treatment. Despite the excellent separation in iCIEF-UV, the UV-based 

technique does not render structural information and peak assignments of 

fragmented variants (i.e. Fd’, LC, scFc, F(ab’)2 ) are not possible.  

Mass spectra of the intact and fragmented cetuximab are shown in Figure 2. 

As can be seen, the mass spectrum of intact cetuximab (Figure 2a), does not 

have sufficient resolution, due to significant overlapping of signals from complex 

glycosylation5. However, distinct mass spectra with good resolution are 

obtained for fragmented cetuximab. Figures 2b, 2c and 2d clearly show the 

reduction of MS complexity and increase in MS resolutions from the intact 

molecule to F(ab’)2 and scFc after IdeS digestion, and to LC and Fd’ after IdeS 

digestion with subsequent reduction.

CIEF-MS charge variant characterization of cetuximab after IdeS 

digestion. Figures 2b and 2c show the two distinct mass envelopes at m/z of 

1800-2800 and 1000-1600, corresponding to the F(ab’)2 and scFc fragments, 

respectively. By setting two fragmentor voltages on the TOF mass spectrometer 

optimum for different size of the molecule within the same acquisition 

experiment (200V for ~25kDa scFc and 380V for ~100kDa F(ab’)2), then 

extracting the electropherograms at suitable mass ranges, we can differentiate 

the peaks associated with F(ab’)2 from those associated with scFc. As shown 

in Figure 3, four well resolved variants (peak 2, 5, 7, and 8) are found to be from 

scFc, and five well separated variants (peak 1, 3, 4, 6, and 7) are observed for 
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F(ab’)2. It’s worth noting that the variant peaks from the two fragments are 

crisscrossed in the pI based electropherograms. Hence, the common adjacent 

peak assignment strategy used for CIEF-UV separation could be misleading. 

Different from the results out of intact cetuximab analysis 5, we are now able to 

obtain clear mass spectrum of each variant. Although peaks 4 and 5 are barely 

resolved under the CIEF conditions, the high resolution of the mass spectra 

enables explicit peak assignments. Peak 4 with a slightly higher pI is a F(ab’)2 

species, and peak 5 is a scFc species with a lower pI. 

Figure 4 shows the deconvoluted spectra of F(ab’)2 and scFc. In Figure 4a 

for scFc, there are clearly two major glycoforms with a mass difference of 162 

Da. The scFc G0F peak (peak 7) is detected at 25,234 Da which is consistent 

with previous literature46. Two basic variants (peaks 2 and 5) and one acidic 

variant (peak 8) are observed. The acidic variant peak 8 of scFc has a small 

mass difference (m=0.4 Da) from the main peak (peak 7) which is likely due 

to deamidation species because other acidified modifications would result in a 

much large mass shift. The basic variant peak 2 of scFc matches well with 

common heavy chain C-terminal lysine (+K), as the mass difference is +128 Da 

from the main peak for both glycoforms. An additional basic variant (peak 5) 

containing masses of m+128 Da and m-0.4 Da with both glycoforms is also 

observed. This basic variant with masses representing combined species has 

been reported in the literature38,48,49. One explanation is that this variant is a 

mixture with multiple modifications, possibly a mixture of deamidated lysine 

variant and the species containing one less deamidation site than the main 

peak. 
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In Figure 4b for F(ab’)2, five well-separated charge variants (peaks 1, 3, 4, 

6, and 7) show a distinct mass increment of 145 Da from peak 1 to peak 7. In 

addition, minor glycoforms with mass difference of 162 Da are observed on all 

charge variants. Consistent with previous literature 38,45, the observed mass 

difference of 145 Da (m+145 Da) in the glycoforms here is resulting from the 

replacement of a neutral galactose with an acidic N-glycolyl neuraminic acid 

(NGNA) group . Based on the CIEF-MS separation, peak 1 with mass value of 

101,928 Da is assigned as the zero NGNA neutral glycoform F(ab’)2 38. The 

peaks 3, 4, 6, and 7 are identified as the F(ab’)2 glycoforms with one, two, three, 

and four NGNA residues, respectively. They are the acidic variants with lower 

pIs than peak 1, and are orderly separated by the CIEF-MS method with 

incremental numbers of NGNA residues. The additional glycoforms with small 

mass shift (<5Da) are pronounced for peak 3, 4, 6, and 7, indicating the 

presence of possible deamidation species. For example, peak 6 contains two 

major glycoforms: one with three NGNA residues at m(145×3) Da, the other 

has two NGNA residues plus a likely deamidation modification with m 

(145×2+1) Da.

Compared with the intact CIEF-MS analysis workflow 5, the IdeS digestion 

approach significantly reduces the cetuximab sample complexity and yields 

mass spectra with far less obscurity. Compared with the middle-up approach 

study previously reported on the same molecule, where six charge variants 

were characterized by off-line CZE-MS38, we are now able to obtain more 

comprehensive, explicitly pI based charge variant analysis in a fully automated 

fashion. For the first time, cetuximab F(ab’)2 acidic variant series differ by a 

single NGNA residue are well separated using a CIEF-MS technique. This 
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provides valuable information for the assessment of cetuximab quality, in that 

sialic acid content is one of the critical quality attributes that needs to be 

thoroughly addressed.

CIEF-MS charge variant characterization of cetuximab after IdeS 

digestion followed by reduction. To pin down and verify the location of the 

charge variants, we treated cetuximab with DTT reduction after IdeS digestion, 

in order to further reduce the size of the molecule by converting the F(ab’)2 

fragment to LC and Fd’ fragments.

As shown in Figure 5a, three major distinct mass envelops are observed. 

Base peak electropherograms are extracted at the mass ranges based on the 

mass envelopes to detect each group of charge variants (Figure 5b). By 

examining the deconvoluted MS of each peak, all eleven charge variant peaks 

in the IdeS plus reduction treated cetuximab are successfully identified. Peaks 

1, 5, 8, and 10 correspond to scFc. Peaks 2, 3, 4, 6, 7, 9, and 11 all contain 

light chain; and Peak 2 is mainly the residual Fab’ fragment. Extracting base 

peak electropherogram to find Fd’ is not applicable because the mass 

envelopes of Fd’ variants shift significantly due to the different number of NGNA 

on each Fd’ charge variant.

The deconvoluted MS revealed trivial mass difference (m ≤ 0.3 Da) for the 

light chain peaks (m = 23,424 Da), indicating that the cetuximab light chain does 

not contribute to the presence of different charge variants. The charge variants 

of scFc (peak 1, 5, 8 and 10) are verified by the MS in Figure 6a that are 

identical to those observed in Figure 4a for IdeS treated sample. 

Although it is not practical to construct an extracted base peak 

electropherogram representing Fd’ as abovementioned, shown in Figure 6b, 
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the analysis of deconvoluted MS for all the peaks reveals the presence of Fd’ 

charge variants in peaks of 2, 3, 4, 6, 7, 9, and 11, each of which also contained 

light chain. This suggests that the Fd’ fragment variants are concomitant with 

light chain by a noncovalent association of Fd’ and LC under the native CIEF 

conditions 39. In Figure 6b, either m+1 Da or m+145 Da is observed between 

adjacent peaks for the seven charge variants of Fd’. The causes of these 

charge variants are either deamidation or addition of NGNA residues. Based 

on these results, it is clear that there are up to two NGNA groups on Fd’. This 

observation agrees well with the results obtained from F(ab’)2 with IdeS 

digested sample, where four NGNA residues are observed corresponding to 

two NGNA residues on each Fd’ fragment. Compared with F(ab’)2, the reduced 

molecular size of Fd’ greatly enhances MS resolution and facilitates data 

interpretation. All seven CIEF-MS peaks of Fd’ charge variants in Figure 6a are 

identified by the high quality MS data owning to the benefit from the middle-up 

approach with reduced sample complexity and the separation power of the 

CIEF-MS method.

Based on deconvolution results, the charge variant peak 2 is assigned 

mainly as residual Fab’ fragment due to incomplete reduction (Figure 6c). The 

residual Fab peak 2 is identified as neutral Fab’ glycoform with no attached 

NGNA. Its mass of 50,966 Da is consistent with the zero NGNA neutral 

glycoform F(ab’)2 at 101,928 Da (Figure 4b). Minor charge variants of residual 

Fab’ are also observed in peak 3 (m+1Da) and peak 6 (m+146 Da).

CONCLUSION
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CIEF-MS charge variant characterization of intact mAbs represents real 

analytical challenges, not only for variants with relatively small mass differences, 

but also for heavily glycosylated mAb molecules such as cetuximab. High level 

of glycosylation leads to overlapping species, thus complicating mass spectra 

and resulting in incomplete identification. Using cetuximab as an example, here 

we illustrate a middle-up CIEF-MS approach that reduces sample complexity 

through IdeS enzymatic cleavage and chemical reduction, which is then 

followed by online CIEF-MS analysis, as a viable and effective solution. The 

CIEF-MS method that we have developed for intact charge variant analysis 

demonstrated excellent separation for fragmented mAb charge variants. The 

combination of reduced sample complexity and powerful CIEF separation 

greatly benefits MS resolution and data interpretation. For the first time, direct 

online CIEF-MS is enabled for mAb charge variants at the subunit level, and in-

depth charge variant analysis of cetuximab is achieved with a single CIEF-MS 

analysis. All eight charge variants following IdeS cleavage and all eleven 

charge variants after IdeS plus reduction treatments are identified, which 

pinpointed the source of the variants of cetuximab at the subunit level. 

This middle-up approach is a valuable workflow for in-depth, accurate 

identification of charge variants for complex therapeutic mAbs and related 

molecules. As our method is based upon the current benchmark charge variant 

separation technology, iCIEF, that has been widely used for quality attributes 

assessments, this middle-up CIEF-MS method offering rich MS information of 

resolved variants has the potential to become an essential tool to expand our 

capabilities in analyzing and understanding charge heterogeneity for 

therapeutic proteins.
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Figures

Figure 1. CIEF separation of intact and fragmented cetuximab. CIEF-MS 

electropherogram: (a) extracted ion at m/z 2960-3200 of intact mAb 5, (b) 

extracted base peak at m/z 1500-2600 of IdeS digested mAb, (c) extracted 

base peak at m/z 1000-2000 of IdeS plus reduction treated mAb; iCIEF-UV 

electropherogram: (d) intact, (e) IdeS digested, (f) IdeS plus reduction treated.
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Figure 2. Mass spectra of intact and fragmented cetuximab. (a) intact, (b) 

F(ab’)2 of IdeS digested, (c) scFc of IdeS digested, (d) LC and Fd’ of IdeS plus 

reduction treated. 
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Figure 3. CIEF-MS extracted based peak electropherograms of IdeS 

digested cetuximab. (a) m/z 1500-2600 with FV at 380V, (b) m/z 1269-

1271 with FV at 200V, (c) m/z 2486-2496 with FV at 380V.
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Figure 4. CIEF-MS of IdeS digested cetuximab. The deconvolued 

mass of charge variants of (a) scFC, and (b) F(ab’)2. The peak 

numbers correlate to the peak assignments in Figure 3.
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Figure 5. CIEF-MS of IdeS plus reduction treated cetuximab. (a) three 

major mass envelopes observed; (b) base peak electropherogram at 

various mass ranges, from top to bottom: m/z 1000-2000, 1234, 1209-

1210, 1500. 
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Figure 6. CIEF-MS of IdeS plus reduction treated cetuximab. The 

deconvolued mass of charge variants of (a) scFc; (b) Fd’; (c) residual 

Fab’. The peak numbers correlate to the peak assignments in Figure 5.
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