关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

球差校正透射电镜ABC速成知识

2017.1.26

 了解球差校正透射电镜,从这里开始

前言

  球差校正透射电镜(spherical aberration corrected Transmission Electron Microscope: ACTEM)随着纳米材料的兴起而进入普通研究者的视野。超高的分辨率配合诸多的分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。这里将给大家介绍ACTEM的基本原理,何为球差,如何校正,ACTEM的种类,以及如何为ACTEM准备你的样品。最后我会介绍一下透射电镜的最前沿,球差色差校正透射电镜。

什么是球差?

  100 kV的电子束的0.037埃,而普通TEM的电分辨率仅仅为0.8纳米。这主要是由TEM中磁透镜的像差造成的。球差即为球面像差,是透镜像差中的一种。其他的三种主要像差为:像散、彗形像差和色差。透镜系统,无论是光学透镜还是电磁透镜,都无法做到绝对完美。对于凸透镜,透镜边缘的会聚能力比透镜中心更强,从而导致所有的光线(电子)无法会聚到一个焦点从而影响成像能力。在光学镜组中,凸透镜和凹透镜的组合能有效减少球差,然而电磁透镜却只有凸透镜而没有凹透镜,因此球差成为影响TEM分辨率最主要和最难校正的因素。此外,色差是由于能量不均一的电子束经过磁透镜后无法聚焦在同一个焦点而造成的,它是仅次于球差的影响TEM分辨率的因素。

  

13322_201801052343501.jpg

图1 球差和色差的成因示意图

如何校正球差?

  自TEM发明后,科学家一直致力于提高其分辨率。1992年德国的三名科学家Harald Rose (UUlm)、Knut Urban(FZJ)以及Maximilian Haider(EMBL)研发使用多极子校正装置调节和控制电磁透镜的聚焦中心从而实现对球差的校正,最终实现了亚埃级的分辨率。被称为ACTEM三巨头的他们也获得了2011年的沃尔夫奖。多极子校正装置通过多组可调节磁场的磁镜组对电子束的洛伦茨力作用逐步调节TEM的球差,从而实现亚埃级的分辨率。

13322_201801052343502.jpg  

图2 三种多极子校正装置的示意图和球差矫正光路示意图

ACTEM的种类

  TEM中包含多个磁透镜:聚光镜、物镜、中间镜和投影镜等。球差是由于磁镜的构造不完美造成的,那么这些磁镜组都会产生球差。当我们矫正不同的磁透镜就有了不同种类的ACTEM。回想一下STEM的原理,当我们使用STEM模式时,聚光镜会聚电子束扫描样品成像,此时聚光镜球差是影响分辨率的主要原因。因此,以做STEM为主的TEM,球差校正装置会安装在聚光镜位置,即为AC-STEM。而当我们使用image模式时,影响成像分辨率的主要是物镜的球差,此种校正器安装在物镜位置的即为AC-TEM。当然也有在一台TEM上安装两个校正器的,就是所谓的双球差校正TEM。此外,由于校正器有电压限制,因此不同的型号的ACTEM有其对应的加速电压,如FEI TITAN 80-300 就是在80-300 kV电压下运行,也有专门为低电压配置的低压ACTEM。

球差校正电镜的优势:

  ACTEM或者ACSTEM的最大优势在于球差校正削减了像差,从而提高了分辨率。传统的TEM或者STEM的分辨率在纳米级、亚纳米级,而ACTEM的分辨率能达到埃级,甚至亚埃级别。分辨率的提高意味着能够更“深入”的了解材料。例如:最近单原子催化很火,我们公众号也介绍了大量相关工作。为什么单原子能火,一个很大的原因是电镜分辨率的提高,使得对单原子的观察成为可能。浏览这些单原子催化相关文献,几乎无一例外都用到了ACTEM或者ACSTEM。这些文献所谓的“单原子催化剂”,可能早就有人发现,但是因为受限于当时电镜分辨率不够,所以没能发现关键的催化活性中心。正是因为球差校正的引入,提高了分辨率,才真正揭示了这一系列催化剂的活性中心。

何时才需要用球差校正电镜呢?

  虽然现在ACTEM和ACSTEM正在“大众化”,但是并非一定要用这么高大上的装备。如果你想观察你的样品的原子级结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。就纳米晶的合成而言,球差校正电镜常用来揭示纳米材料的细微结构信息。比如合成一种纳米核壳材料,其中壳层仅有几个原子层厚度,这个时候普通电镜下很难观察到,而球差电镜则可以拍到这一细微的结构信息(请参见夏幼男教授的SCIENCE,349,412)。

如何为ACTEM准备你的样品

  首先如果没有合作的实验室的帮助,ACTEM的测试费用将会是非常昂贵的。因此非常有必要在这里介绍如何选择测试仪器和准备样品。如果你想观察你的样品的原子级的结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品的在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。接着,在测试之前最好尽量了解样品的性质,并将这些信息准确地告知测试者。其中我认为先用普通的高分辨TEM观察样品是必须的,通过高分辨TEM的预观察,你需要知道并记录以下几点:一、样品的浓度是否合适,目标位点数量是否足量;二、确定样品在测试电压下是否稳定并确定测试电压,许多样品在电子束照射下会出现积累电荷(导电性差)、结构变化(电子束的knock-on作用)等等;三、观察测试目标性状,比如你希望测试复合结构中的纳米颗粒的原子结构,那么必须观察这些纳米颗粒是否有其他物质包覆等,洁净的样品是实现高分辨率的基础;四、确定样品预处理的方式,明确样品测试前是否需要加热等预处理。五、拍摄足量的高分辨照片,并标注需要进一步观察的特征位点。在ACTEM测试中,与测试人员的交流非常重要,多说多问。

球差色差校正透射电镜

  球差校正器经过多年的发展,在最新的五重球差校正器的帮助下,人类成功地将球差对分辨率的影响校正到小于色差。只有校正色差才能进一步提高分辨率,于是球差色差校正透射电镜就诞生了。我们就欣赏一下放置在德国Ernst Ruska-Centre的Titan G3 50-300 PICO双球差物镜色差校正TEM (300 kV分辨小于0.5埃)以及德国乌尔姆大学的TitanG3 20-80 SALVE 低电压物镜球差色差校正TEM (20 kV 分辨率小于1.4埃)。

13322_201801052347201.jpg

  图3 Titan G3 50-300 PICO, TitanG3 20-80 SALVE及其校正器

  致谢:本文作者来自研之成理—群友Mix,非常感谢他的付出。

  球差校正扫描透射电子显微镜

  spherical aberration corrected Scanning Transmission Electron Microscope:Cs-corrected STEM

  相差校正功能

  近年来,透射电子显微镜(TEM)的进步显著,最为突出的是球差校正技术的开发。电子显微镜中使用的磁场透镜,原理上因为只能采用凸透镜制作,并不能像光学显微镜一样通过组合凹透镜改善像差。因此,镜片的各种像差,尤其是3层球面像差(Cs)的影响,分辨率会有所限制。但是最近几年来,利用理论上一直被倡导的多极子实现了凹透镜装置的制作,并凭借电稳定性的提高和调节中必要实验的数据积累等而最终被广泛应用。这种球差校正构造结合了TEM的透射和成像功能,实现了即便加速电压值200KV也无法实现的0.1nm的分辨率,使单个原子等级上的位置锁定和元素识别成为可能。

  Fig.1中,根据照射体系中有无像差校正结构,电子束会显示不同的路线图。由于偏离透镜中心区域通过的电子束会发生大幅度折射,所以通常电子束不会在样品表面的一点聚焦,电子的探测范围被放大。另一方面,在凸镜的上方导入凹镜(像差校正结构),将会完全消除折射角度不同的现象。因此电子束在样品表面局部区域内聚焦,可以形成极细的电子探针。

13322_201801052351311.gif

图1a 带Cs校正

13322_201801052351312.gif

图1b 不带Cs校正

  图1 Cs-TEM的构造图示  

  另一方面,依靠像差校正,可以利用偏离透镜中心的高角度电子束,从而可以使用大型聚光器(集束)的透镜光圈。通常,聚光器透镜光圈只能使用到10mrad左右,但是通过像差校正后,20~40mrad的大型聚光器透镜光圈也可以使用。如Fig.2中所示,与像差校正前相比像差校正后的电子探测电流值增大了十倍以上。

  13322_201801052351313.jpg

  图2a 校正前

13322_201801052351314.jpg

  图2b 校正后

13322_201801052351315.gif

图2c 校正前和校正后

图2 电子束强度图 

推荐
关闭