关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

CRISPR明星技术2015开年精彩不停

2015.3.18

  可以毫不夸张地说,CRISPR-Cas9已经风靡生物技术世界。

  无论是在基础研究,还是临床研究方面,RNA引导性核酸酶使研究人员能够以单核苷酸分辨率编辑活细胞的基因组,这为生物技术不少领域带来了新希望。借助于CRISPR-Cas9基因编辑技术,科学家们能够调查一些基因和遗传突变在人类生物学及疾病中的作用。这一系统可以在DNA水平上消除基因的功能,相比之下像RNA干扰一类的遗传干扰技术则是在RNA水平上发挥作用。

  在2015年刚刚开年的这三个月里,CRISPR技术相关的成果如潮水一般的涌来,单从NCBI上的数据就可以看出,发表的论文已经达到了上万个,从成果上来说,不但在衰老研究,癌症研究方法取得了重要成果,而且技术上也突破了一个个难题。

  首先,从技术本身来说,2014年在两个方面得到了改进:提高导向RNA(gRNA)的特异性,以及如何筛选脱靶。对于第一个问题,Nature Biotechnology杂志建议切断gRNAs,减少脱靶问题,而且不影响靶标活性,而另外一个研究组则建议更长一些的gRNAs。

  第二个问题,研究人员认为可以用配对替换切口酶(nickases)替换Cas9 核酸酶(前者每次只能切断DNA一条链),或者将 Cas9突变融合到Fok1 这种需要催化激活的核酸酶中去。此外,通过来自不同物种的Cas9也能增加靶向多个位点的灵活性,进一步改善 Cas9-gRNA 复合物的传递系统,也有助于增加效率。

  2015年,来自美国希望之城贝克曼研究所等处的研究人员使用了一种基于整合酶缺陷型慢病毒载体(IDLV)的技术,通过表达CRISPR/Cas9核酸酶或TALENs的质粒转染HEK细胞,之后转导了IDLV。这个IDLV携带的基因赋予了抗生素和嘌呤霉素的抗性。核酸酶形成DSB后,允许IDLV整合,使得耐受嘌呤霉素的克隆数量增加了两到三倍。

  还有来自韩国首尔大学等处的研究人员开发出一种强大、敏感、无偏见和具有成本效益的方法——Digenome-seq,可在全基因组范围内检测人类细胞中的CRISPR/Cas9脱靶效应。

  这种方法利用基因组测序查找CRISPR-Cas9可能突变产生的打靶和脱靶序列。他们用Cas9核酸酶在试管中消化人类基因组DNA,然后进行全基因组测序。这种体外消化可产生打靶和脱靶序列的独特模式,可以通过计算确定。此外,个在sgRNA末端添加组成CRISPR-Cas9的鸟嘌呤核苷酸,研究人员成功地制备了这种高度发达的可编程核酸酶,在人类基因组中它没有可测量的脱靶效应。

  更加令人激动的是,几个研究组开发出了基于CRISPR-Cas9的转录激活系统,可以用光进行控制,该系统包括一对融合蛋白:一个蛋白把灭活Cas9蛋白结合到一个称为CIb1的蛋白,另外一个蛋白将一个转录激活结构域结合到隐花色素2(CRY2)。用蓝光照亮表达这两个蛋白质的细胞和引导性RNA,可使两个蛋白质片段配对,将转录激活结构域拴在DNA上,并激活转录。本设计为以前这种构成性的合成转录因子引入了一种调控机制。

  在疾病研究方面,斯坦福大学的科学家利用一种基因组编辑工具箱构建出了可在自然短寿的非洲青鳉鱼(African turquoise killifish)中研究衰老的平台。

  而来自Keio大学的研究人员建立了源自正常肠道上皮的类器官,并用CRISPR系统向其中引入了多个突变。研究人员通过CRISPR系统引入了肿瘤抑制基因APC、SMAD4和TP53突变,以及癌基因KRAS和PIK3CA突变。他们发现,表达全部五种突变的类器官,不依赖干细胞巢的因子就能在体外生长,而且移植到小鼠肾包膜下会形成肿瘤。

推荐
热点排行
一周推荐
关闭