关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

基于LED光源的科研级植物培养方案(一)

2020.4.28

Plant Growth and Cultivation科研级植物培养系统方案(一)

植物培养是生物实验室最重要的常规基础实验之一。以前的研究中,只要求培养系统能够使种子萌发、基本满足植物的生长即可。但在真正严格的植物生理生态研究中,传统培养箱由于种种原因是远远不能达到要求的。

本文将系统介绍一系列基于LED光源的科研级植物培养方案,包括SL3500植物培养LED光源、FytoScope植物生长箱等。这些培养方案和仪器是由欧洲植物生理科学家直接参与设计的,才能够真正进行精确的科研实验

现代科研级植物培养的技术要求

1.光源

众所周知,光是植物生长中最重要的环境因子之一,它不仅为植物光合作用提供辐射能,还为植物提供信号转导,调节其发育过程。植物在它的整个生命周期中始终处于一个不断变化的光环境中,在长期的进化中,植物不

仅适应了光环境的变化,而且还能相互影响而改变周围的光环境。因此,培养箱光源就是决定其品质最重要的部分。

1)光质

到达地面的太阳光波长大约从300~2600nm,其中对光合作用的有效波长在400~700nm之间,其中425~490nm的蓝光以及610~700nm的红光对光合作用贡献率最大,而520~610nm(绿色)的光线被植物吸收的比率很低(闫新房,2009)。

LED(1ight—emitting diodes),即发光二极管的一大特点就是可以发射出纯度极高的单色光(图1)。因此从LED诞生之初,红光和白光LED就被用于植物培养。


图1. FytoScope LED光源的单色光光谱

在很多研究中,科学家希望尽量模拟自然太阳光来培养植物。由图2中可以看到白炽灯和荧光灯虽然发出的都是白光,实际上其光谱都与太阳光谱有很大差异。与太阳光谱最为类似的就是卤光灯和白光LED。但是,卤光灯由于有相当一部分能量都用于发射植物不能利用的750-2600nm波段近红外辐射。美国GE公司的资料指出这部分能量占到总辐射能量的76%。同时,近红外辐射又会有极强的光辐射增温效应,长时间照射会对培养的植物造成损伤。而LED光源的一大优点就是发热量极少。这从图2的光谱图中也可以看到白光LED的近红外辐射是极低的。

图2.不同光源光谱图,上左:太阳光;上中:白炽灯;上右:荧光灯(日光灯);下左:卤光灯;下中:冷白光LED;下右:暖白光LED

光除了给植物提供能量,还会直接通过光敏色素和隐花色素来调节植物的多种生理反应(图3)。光敏色素有两个互变异构体——红光光敏色素(Pr)和远红光光敏色素(Pfr)。Pr吸收波长为660 Bin左右的红光,Pfr吸收波长为730nm左右的远红光。光敏色素调节多种不同植物对光的反应,包括光周期,种子萌发、展叶、下胚轴伸长和脱黄化。隐花色素则吸收蓝光和紫外光范围的光波。


图3.光敏色素与激素的交互作用(Jaillais, 2010)

因此FytoScope在白光LED和红蓝LED以外,还配备了远红光光源。除了为植物生长提供最佳的光质,同时满足植物光形态建成的需要。另外,FytoScope可以提供绿光LED与红蓝LED组成三原色光源系统,通过调整三原色的比例,能够发出可见光谱中任意一种颜色的光,用于不同光质对植物影响的研究(图4)。


图4. 不同光源下拟南芥的成长状况及生理指标


推荐
热点排行
一周推荐
关闭