关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

差动热分析仪的分析结果

2020.3.10

分析结果

差动热简介

也叫做示差扫描热量法(Differential Scanning Calorimetry ),是在程序温度下,测量物质与参比物的功率差值△W与温度的函数关系。是和DTA在应用上相近而在原理上稍有改进的一种热分析技术。

差动热分析仪CDR-4P用于测定物质在热反应时的特征温度及吸热或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应,广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域。是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要仪器。可实现在同一台热分析仪上分别测量DTA和DSC。

DTA的工作原理

(图1)是在程序温度控制下恒速升温(或降温)时,连续测定试样(S)同参比物(R:如α-氧化铝)间的温度差ΔT,从而以ΔT对T作图得到热谱图曲线(见图2),进而通过对其分析处理获取所需信息。

在进行DTA测试时,试样和参比物分别放在两个样品池内,如图1所示,加热炉以一定的速率升温,若试样没有热反应,则它的温度和和参比物温度之间的温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,由计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度及其面积的大小与形状可以进行分析。

DSC的原理和DTA基本相似,其改进之处是在试样和参比物下增加了两组补偿加热丝,当试样在加热过程中由于热反应而和参比试样间出现温差ΔT时,通过差热放大和差动热量补偿使流入补偿丝的电流发生变化。当试样吸热时,补偿使试样一边的电流立刻增大,反之,在试样放热时使参比物一边的电流增大,直到两边达到热平衡,温差ΔT消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿。

DSC和DTA相比,在试样发生热效应时DTA中试样的实际温度已经不是程序升温时所控制的温度(如试样在放热反应时会加速升温),而在DSC中试样的热量变化可及时得到补偿,试样和参比物的温度始终保持一致,避免了参比物和试样之间的热传递,因而仪器的热滞后现象小,出峰温度更接近实际温度,且反应更灵敏,分辨率更高。

DTA或者DSC分析

所选用的参比物应是在实验温度范围内不发生物理变化及化学变化的物质,如α-Al2O3,石英粉和MgO等。当把试样和参比物同置于加热炉中等速升温进行DTA测试时,若试样不发生热效应,在理想情况下,试样的温度和参比物的温度相等,此时ΔT=0,在热谱图上应是一根水平基线。当试样发生了物理或化学变化,吸入或放出热量时,ΔT≠0,在热谱图上会出现吸热或放热峰,形成ΔT随温度变化的差热曲线(热谱图),在习惯上通常以温度差ΔT作纵坐标,吸热峰向下,放热峰向上,温度T作横坐标,自左向右增加。在热谱图上,由峰的位置可确定发生热效应的温度,由峰的面积可确定热效应的大小,由峰的形状可了解有关过程的动力学特性。

DTA和DSC的相变

测定结晶温度Tc、熔点Tm、结晶相转变等物理变化,研究聚合物固化、交联、氧化、分解等反应,测定聚合物玻璃化转变温度Tg,也可测定反应温度或反应温度区等反应动力学参数。如图7-2中,聚合物的玻璃化转变为一体积松弛过程,在Tg处,聚合物的比热发生突然变化,故在热谱图上Tg处表现为基线的突然变动。聚合物的熔融和热分解吸热,故在热谱图上出现向下的负峰,而聚合物的结晶和氧化为放热,表现为向上的正峰,据此可判断聚合物的结晶相转变,耐热氧化性能及耐热稳定性等。

DTA和DSC的因素

要获得准确的DTA和DSC结果,zui重要的是使试样和参比物处于均匀的温度,并在均匀状态的条件下进行操作,以免造成基线漂移和差热峰出现不对称等情况。此外试样和参比物的热容量不匹配或导热性不好,试样堆砌不紧密或颗粒大小不合适,几何形状不对称,存在稀释剂等因素都可能对结果产生影响。

所谓稀释剂是指那些用来和试样混合,以使其热传导和热扩散与参比物相匹配的惰性物质(常用参比物)。一般来说,采用小试样和少量稀释剂效果较好,但由于灵敏度随试样量的增大而增大,而分辨率随之下降,因此必须选择一zui佳配比。除试样用量外,如试样粒度太小,其表面积增大,转变温度会移向低温。试样堆砌紧密,热传导大,从而改善了再现性。


推荐
热点排行
一周推荐
关闭