关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

高效率钙钛矿LED中的“光子回收”效应

2020.2.04

  最近,剑桥大学与浙江大学的研究团队,在Nature Communications合作发表了题为“The role of photon recycling in perovskite light-emitting diodes”的论文,研究了高效率钙钛矿发光二极管(钙钛矿LED)中光子回收效应的影响,为器件发光效率的进一步提升提供了思路。剑桥大学的Changsoon Cho博士是论文的第一作者,剑桥大学的Neil Greenham教授、Felix Deschler博士与浙江大学光电学院的狄大卫研究员是论文的通讯作者。

  让大部分的光子从平面型LED中发射出来并非易事。造成这个问题的最主要因素是LED材料与空气的折射率存在差异 ,因此一般情况下只有一小部分光才能直接逃逸;其余的光因为全反射作用,大多被限制在LED器件中并最终以热的形式耗散。材料的折射率越高,这个问题就愈加严重,因此一般而言只有20%左右的光能够从LED的表面辐射出来。

  造成80%的光损耗显然是不利的,LED领域的研究人员为了避免这种情况,采用了各种方法。例如,在有机LED中,一种用来提高出光效率的方式是控制发光分子的位置和取向。另一个比较常见的方法是在器件中引入微纳结构,造成光的散射以利于提取光子。当然,这些提升一般都是特殊光学设计的结果。然而有一种新的LED技术,它在没有刻意优化光学设计的情况下就产生了高效率,这可以说是出人意料的。

  这种新型技术就是钙钛矿LED,它与钙钛矿太阳能电池一样,也逐渐成为了学界关注的热点。钙钛矿LED领域的研究人员(包括作者团队),仅用了短短4年的时间,就将器件的外量子效率从低于1%提高到了20%以上。其中一部分研究组的高效率结果,只能用出光率的提升来解释。而这种提升,究竟是由于器件的光学结构特殊,导致光更容易从正面出射,还是因为钙钛矿本身的一些特殊的性质,帮助光子从器件里逃脱?

图片.png

图1: 传统薄膜LED模型(左图)与钙钛矿LED光子回收效应(右图)的对比。前者受到全反射导致的波导效应的限制;后者因为光子回收作用,提高了出光率的理论上限。

  论文作者的研究表明,光子回收效应在出光过程中扮演了重要的角色。这种效应背后的原理很简单:在器件中沿侧向传播(波导模式)的荧光被钙钛矿发光材料重新吸收,而这些原本应被耗散的能量,通过辐射复合,有了再一次产生光子的机会。由于重新产生的光子的辐射方向是随机的(有可能避开导致全反射的角度),因此它又获得了一定的概率从器件中逃逸。第一次没有成功逃逸的光子,还能够再一次被钙钛矿吸收并发射,如此循环,因而被“回收利用”。与有机半导体不同,钙钛矿半导体的发光谱与吸收谱一般有着较显著的重叠,因此在一些新型钙钛矿LED材料中,由于钙钛矿材料自身的发光效率足够高,理论上有30%-70%的电致发光可能是由光子回收贡献的。在未来的研究中,如果能够进一步减少钙钛矿LED器件中电极材料的吸收,将出光率以及外量子效率提高到接近100%也将成为可能。


推荐
热点排行
一周推荐
关闭