关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

拉曼问题汇总:拉曼光谱百问解答总结(四)

2020.2.25

  三十七.有几种激光光源?

  1.氩离子、半导体、氦氖;

  2.可见光激光器应用最多的是氩离子激光器,可产生:10种波长的激光,其中最强的是488纳米(蓝光)和514纳米(绿光)激光器,现在最为常用,性能十分稳定的是514纳米激光器;另外,532纳米固体二极管泵浦激光器、632.8纳米(红光)、780纳米等可见光激光器;以及785纳米二极管、830纳米近红外激光器;掺钕的钇铝石榴石(YAG)激光器被用作傅里叶变换拉曼光谱的光源,其激光波长为1064纳米(红外);染料激光器是目前较成熟、应用较为普遍的可调谐激光器,是共振拉曼研究时的理想光源。一般来说,拉曼光谱与激光的波长是无关的,选择不同波长的激光主要取决于研究的对象,如果研究生物蛋白质、细胞等,则需要波长较长的近红外光,避免了荧光对拉曼光谱的干扰,但,对于一些深色、黑色粉末样品,由于,近红外的热效应,而使热背景干扰拉曼光谱,这时,选择可见光区的激光比较合理。对于研究化学发光和荧光光谱,则选择紫外激光器。所以在研究颜料时,选配514纳米和785(或830纳米)纳米两种波长的激光器就够用了,对于红、黄、白色颜料采用785纳米的激光器进行分析,对于蓝、绿色颜料则采用514纳米的激光器进行分析。

  3.激光出现以前主要用低压水银灯作为光源,目前,已很少使用。为了激发喇曼光谱,对光源最主要的要求是应当具有相当好的单色性,即,线宽要窄,并能够在试样上给出高辐照度。气体激光器能满足这些要求,自准性能好,并且是平面偏振的。各种气体激光器可以提供许多条功率水平不同的分立波数的激发线。最常用的是氩离子激光,波长为514.5nm和488.0nm的谱线最强,单频输出功率为0.2~1W左右。也可以用氦氖激光(632.8nm,约:50mW)。

  4.在光纤测量和光纤传感系统中使用的光源种类很多,按照光的相干性,可分为:非相干光源和相干光源。非相于光源包括白炽光源和发光二极管(LED),相干光源包括:各种激光器。激光器按工作物质的不同,可分为气体激光器、液体激光器、固体激光器和半导体激光器等。半导体光源是光纤系统中最常用的也是最重要的光源。其主要优点是体积小、重量轻、可靠性高、使用寿命长,亮度足够、供电电源简单等。它与光纤的特点相容,因此,在光纤传感器和光纤通信中得到广泛应用。半导体光源又可分为发光二极管(LED)和半导体激光器(LD)。这两种器件结构明显不同,但是,却包含相同的物理机理。增益带宽高于任何其它媒质,主要由于光子发射是因两个能带间的电子运动所致。半导体激光器的典型增益曲线延宽到 1012Hz。

  5.紫外的也有的比如,214nm。

  三十八.什么是CCD?

  1.电荷偶合器件,Charge coupled device;

  2.固体检测器。目前,已被采用的固体检测器主要有:

  CCD(Charge-Coupled Detector),电荷耦合检测器。二维检测器,每个CCD检测器包含2500个像素,将22个CCD检测器环形排列于罗兰园上,可同时分析120~800nm波长范围的谱线。

  CID(Charge-Injection Detector),电荷注入式检测器,二维阵列,28×28mm的芯片共有512×512(262,144)个检测单元,覆盖167~1050nm波长范围;

  SCD(Subsection Charge-Coupled Detector)分段式电荷耦合检测器,面阵检测器,面积:13×19mm,有6000个感光点,有5000条谱线可供选择;

  CCD、CID等固体检测器,作为光电元件具有暗电流小、灵敏度高、信噪比较高的特点,具有很高的量子效率,接近理想器件的理论极限值。而且是超小型的、大规模集成的元件,可以制成线阵式和面阵式的检测器,能同时记录成千上万条谱线,并大大缩短了分光系统的焦距,使直读光谱仪的多元素同时测定功能大为提高,而仪器体积又可大为缩小,焦距可缩短到0.4m以下,正在成为PMT器件的换代产品。

  3. CCD也有百万象素的。不是所有的ccd都应用于罗兰圆类仪器上。

  典型仪器:Varian Vista MPX

  CID也有大面积的,百万象素的,Leeman Prodigy;

  三十九.我要用激光拉曼做一种在-20度下就分解的物质,请问把样品保存在低温下测定可以吗?激光是否会使样品分解?

  1.最好是把样品放在一个很小的容器里面,然后低温作实验,应该没有问题。

  2.可以做的,激光可以穿玻璃,将样品放入透明的玻璃下面就可以了。

  我看有的老师做固体样品时,防止激光打出的能量太高,将固体融化,污染镜头,或者,镜头不小心靠近样品,还在显微镜头上面套了一层透明塑料了

  四十.我想做一个样品的标准曲线,溶剂是CF2H-CF2-CF2-CF2-CF2H,溶质是含有-O-的全氟化高分子,好像是直链的(UV-Visual无吸收峰)。想用拉曼光谱作定量分析,请问能不能做到?

  1.能做,直接峰强定量;

  2.做过照度和标准物校正后的拉曼仪可以直接使用峰强作为定量依据;

  3.可以半定量。

  四十一.用普通拉曼光谱仪对肿瘤细胞和正常细胞的光谱进行检测,我发现信号完全被玻璃信号所掩盖。但是培养细胞的容器大都是玻璃的,请问各位高手,我该如何设计实验方案?

  1.改变光路,从上往下照,而样品上面不要有石英或者玻璃,光直接打在样品溶液上;

  2.使用流动泵,使激光打在液体的线上。没试过,但是我觉得这个方法不好。

  四十二.我现在在为拉曼光谱仪进行波长校准,说明书上说就用汞灯就可以,但是,我却根本测量不出来峰,更不用说准确位置的峰了。

  1.用以光谱校准的汞灯谱,最好与样品几乎同时测量,比如,刚刚测完样品后,或在测量样品之前。目的是为了减少光栅漂移造成的误差。

  2.如果,你能看到样品的谱线,按道理也应该能看到汞灯的谱线,只要汞灯放好在样品位置上,并且汞的谱线足够强。请检查光路是否校准。之前请确信:汞灯是否在你的测量范围有谱线。

  3.如果,你不是校准高于1500cm-1的谱线,那么Fenchone是很好的拉曼标准样品。

  四十三.本人才用硝酸刻蚀银片的方法制备活性基底,但是,在制备过程种无法得到理想的效果,是否在制备中有什么地方应该特别注意?

  1.刻蚀的时间注意下 还是挺好做得

  2.基底的制备,用硝酸腐蚀,首先,你的银片质量要过关,表面的杂志要除掉,所以,银片一定要打磨光滑,然后,就是要注意腐蚀的时间,这个是很重要的。

  四十四.实验室攒的激光拉曼,共聚焦的。刚开始使用,做实验的时候有人需要这个数据,但是没有现成的。有什么办法可以测量样品位置激光光斑大小么?

  1..有白光系统的,直接在屏幕上估算;

  2..有标尺的,通常3个u,100倍;

  3.不好测,你实际看到的要大于实际的光斑!

  四十五.碳中的两个峰:D-band 和G-band,这两个峰到底是什么意思啊,有的文献上说d-peask是指disordered carbon,G-peak是指graphitic carbon,而,另有一些文献是以sp2原子的键来分,到底这两个是什么意思呢?

  D峰是无序化峰(disorder),D与G峰都是有sp2引起的。

  1585cm−1左右的拉曼峰是体相晶态石墨的典型拉曼峰,称,G带。此峰是石墨晶体的基本振动模式,其强度与晶体的尺寸有关。1360cm−1处的拉曼峰源自石墨碳晶态边缘的振动,称为D 带。这两处拉曼峰为类石墨碳(如,石墨,碳黑,活性碳等)的典型拉曼峰。

  四十六.激光和FT拉曼的区别?

  FT Raman可以减少荧光干扰这个说法没错;

  你的研究目的是什么?FT Raman和激光显微Raman应用领域是有一定差别的;

  一般说来,做有机或高分子研究用FT Raman多些,做材料研究用激光Raman多些;

  另外,你还要注意选择合适的激发波长。

  四十七.激光激发的拉曼谱线是高斯线型还是洛仑兹线型?是否与激光的线型有关?

  1.来自于振荡的偶极矩的辐射,经典的电磁场理论可以证明Raman的峰是一个Lorentzian形状。但是实际上得到的Raman的峰是一个在Raman峰本身的形状,(natural line shape),仪器的传输函数(instrumental transfer function)和无序诱发的振荡的分布(disorder-induced distribution of vibrators)之间的卷积积分(convolution).它经常被认为是高斯或者Voigt函数(一个完美的lorentzian和高斯函数的对称卷积)。

  2.通常,晶体的峰用Lorentz解析,非晶的用Gaussian解析比较合适。

  四十八.我用的是GPIB-PCIIA数据采集卡,这是不是即插即用的卡?

  据我所知,这个东西还不是完全的即插即用,操作系统是不能完全识别的,需要认为安装驱动程序才能使用。

  四十九.请问如何确定多壁碳纳米管拉曼光谱D'和G'lines和D+Gline的位置?

  D缝的位置应该是在1360cm-1左右,可能会有正负10左右的偏差,G峰的位置应该是在1570cm-1左右,可能会有偏差的;D+G也就是两个数相加,大概是在2930cm-1左右!


推荐
关闭