关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

动物细胞培养反应器简介

2020.7.21

动物细胞培养技术能否大规模工业化、商业化,关键在于能否设计出合适的生物反应器(bioreactor)。由于动物细胞与微生物细胞有很大差异,传统的微生物反应器显然不适用于动物细胞的大规模培养。首先必须满足在低剪切力及良好的混合状态下,能够提供充足的氧以供细胞生长及细胞进行产物的合成。 

一、生物反应器分类 

目前,动物细胞培养用生物反应器主要包括:转瓶培养器、塑料袋增殖器、填充床反应器、多层板反应器、螺旋膜反应器、管式螺旋反应器、陶质矩形通道蜂窝状反应器、流化床反应器、中空纤维及其它膜式反应器、搅拌反应器、气升式反应器等。 

按其培养细胞的方式不同,这些反应可分为以下三类: 

1.悬浮培养用反应器:如搅拌反应器、中空纤维反应器、陶质矩形通道蜂窝状反应器、气升式反应器; 

2.贴壁培养用反应器:如搅拌反应器(微载体培养)、玻璃珠床反应器、中空纤维反应器、陶质矩形通道蜂窝状反应器; 

3.包埋培养用反应器:如流化床反应器、固化床反应器。 

二、搅拌罐生长反应器 这是最经典、最早被采用的一种生物反应器。此类反应器与传统的微生物生物反应器类似,针对动物细胞培养的特点,采用了不同的搅拌器及通气方式。通过搅拌器的作用使细胞和养分在培养液中均匀分布,使养分充分被细胞利用,并增大气液接触面,有利于氧的传递。现已开发的有:笼式通气搅拌器、双层笼式通气搅拌器、桨式搅拌器、海般式搅拌器等。 

三、气升式生物反应器 

1979年首次应用气升式生物反应器成功的进行了动物细胞的悬浮培养。气升式生物反应器的优点: 
●罐内液体流动温和均匀,产生剪切力小,对细胞损伤较小; 
●可直接喷射空气供氧,因而氧传递率较高; 
●液体循环量大,细胞和养分都能均匀分布于培养液中; 
●结构简单,利于密封并降低了造价。 

常用的气升式反应器有三种:内循环式气升式、外循环式气升式、内外循环式气升式生物反应器。 

四、鼓泡式生物反应器


与气升式反应器相类似,是利用气体鼓泡来进行供氧及混合,其设计原理与气升式生物反应器也相同。 

五、中空纤维生物反应器 用途较广,既可用于悬浮细胞的培养,又可用于贴壁细胞的培养。

其原理是:模拟细胞在体内生长的三维状态,利用反应器内数千根中空纤维的纵向布置,提供细胞近似生理条件的体外生长微环境,使细胞不断生长。中空纤维是一种细微的管状结构,管壁为极薄的半透膜,富含毛细管,培养时纤维管内灌流充以氧气的无血清培养液,管外壁则供细胞黏附生长,营养物质通过半透膜从管内渗透出来供细胞生长;对于血清等大分子营养物,划必须从管外灌入,否则会被半透膜阻隔不能被细胞利用;细胞的代谢废物也可通过半透膜渗入管内,避免了过量代谢物对细胞的毒害作用。 

优点是: 
●占地空间少; 
●细胞产量高,细胞密度可达109数量级; 
●生产成本低,且细胞培养维持时间长,适用于长期分泌的细胞。 

六、生物反应器的设计和放大 设计的总体考虑是: 
①结构严密,能耐受蒸汽灭菌,采用对生物催化剂无害和耐蚀材料制作,内壁光滑无死角,内部附件尽量减少,以维持纯种培养需要; 
②有良好的气-液接触和液-固混和性能和热量交换性能,使质量与热量传递有效地进行; 
③保证产物质量和产量前提下,尽量节省能源消耗; 
④减少泡沫产生,或附有消沫装置以提高装料系数,并有必要可靠的参数检测和控制仪表并能与计算机联机。 

生物反应器的放大:一种新的生物技术产品从实验室到工业生产的开发过程中,会遇到生物反应器的逐级放大问题,每一级约放大10~100倍。生物反应器的放大,表面看来仅是一个体积或尺度放大问题,实际上并不是那么简单。 

反应器放大研究虽已提出了不少方法,但还没有一种是普遍都能适用的。目前还只能是半理论半经验的,即抓住反应过程中的少量关键性参数或现象进行放大。有关氧传递问题在生物反应器中,氧的传递速率要满足细胞对氧的摄取速率,并使反应器中溶解氧的浓度CL要维持在一定水平上。这就是说,在稳态情况下,供氧与需氧间存在下列关系:KLa(C*-CL)=r 

此处, KLa为氧的传递系数;C*为相当气相氧分压的溶氧浓度,CL为培养液中溶氧浓度,r为摄氧率。  

影响供氧的因素从上式可知r=KLa(C*-CL);因此影响供氧的因素总体上讲是KLa和C*-CL值。 
 
要增大C*-CL,无非是增大C*值或降低CL值。增大C*的措施,有适当增加反应器中操作压力和增大气相中的氧分压两个方法。在实际操作中,反应器保持一定正压,以防止大气中的杂菌从轴封、阀门等处侵入,但在增加罐压的同时,发酵代谢所产生的CO2也会更多地溶解于培养液而对发酵不利。至于CL值,一般不允许过分减小,因为细胞在生长中有一个临界氧浓度,低于此临界值,细胞的呼吸将受到抑制。 

影响KLa的因素大致可分为三个方面:一是反应器的结构,包括相对几何尺寸的比例;二是操作条件,如搅拌功率或循环泵功率的输入量,通气量等;三是培养或发酵液的物理化学性质,如流变特性,特别是其粘度或显示粘度、表面张力、扩散系数、细胞形态、泡沫程度等。 

生物反应器中的传热在细胞培养和发酵过程中,热量的释放是普遍存在的。这是因为在培养或发酵过程中细胞与周围环境的物质产生新陈代谢,即发生异化(分解)作用和同化(合成)作用,而异化作用一般释放能量,同化作用则是吸收能量。同化作用包括细胞生长、繁殖、产物形成所需能量来自细胞对培养基中的基质及营养成分的异化。从热力学角度讲,异化所产生能量必然应多于同化所需要能量,而多余的能量则转化为热能释放到周围环境中去。无论是涉及细胞或酶的反应中,释放出的热量都应及时移去,以免影响过程的正常进行,为此在生物反应器中一般都附有冷却装置。  




推荐
关闭