关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

气相色谱仪进样系统(三)

2019.12.28

1)衬管应有合适的气化容量,防止样品气化膨胀体积大而引起倒灌。

2)为减少样品蒸气反吹,衬管顶部应有缩径结构。

3)衬管内径和热容量要足够大,以利于样品气化和样品与载气的混合。衬管都不是直通的,衬管内有缩径结构、烧结玻璃粉、玻璃棉或石英玻璃棉等。

衬管内的填充物增加了样品与衬管接触的表面积,加快了气化速度,有利于减小分流歧视。同时能防止不挥发性组分和机械杂质进入色谱柱,保护色谱柱不被污染。填充物应位于衬管的中间即温度最高的地方,也是注射针尖所到达的地方,以提高气化效率,减少注射针尖对样品的歧视。

4)少量的玻璃棉能促进样品蒸发完全,重现性好,可随意调整高度,经济,容易更换。但玻璃棉活性较大,不适合分析极性化合物,此时可用经硅烷化处理的石英玻璃棉或采用多级缩径衬管。

5)若衬管壁做薄些,填充几毫米固定相,可起到预柱作用。同时能阻挡不挥发性组分和机械杂质通过,再生和更换也很方便。

6)目前衬管材料多是玻璃,常用密封材料是耐温硅橡胶和石墨。衬管上端的“O”形硅胶密封圈用一段时间后,会形成载气旁路(分流、柱流量),使峰忽大忽小,造成无法定量。因此,除保证衬管初装时的密封性外,还要及时检漏和更换。当进样口温度超过400℃时,最好采用石墨密封圈。

(7)尾吹气路:

由于色谱柱内载气流量很小,载气进入检测器后会突然减速,使谱峰展宽。因此,在色谱柱出口与检测器之间安装辅助尾吹装置,使样品快速流过检测器,从而克服检测器的死体积,使峰形尖锐。

3、特点:

(1)优点:

1)可用于浓缩样品。

2)样品不需要溶剂稀释,不存在溶剂的有害影响。

3)可注入较大体积的样品。

4)不会引起色谱柱超载,能有效防止柱污染。

5)分流比调节容易,进样量可大可小。

6)色谱峰窄而尖锐。

7)分析结果重现性好。

8)结构和操作简单,有利于自动化。

(2)缺点:

1)不适合浓度和沸点范围宽的混合样品。

2)不适合痕量分析。

3)操作不当会产生分流歧视。

4)由于进样口工作时温度较高或结构限制,对强极性样品会产生吸附、降解或按分子重量重排反应,不适合定量分析。

5)对于挥发性和极性相近的样品,为满足分析重复性和定量精度要求,选取的实验参数多,建立较佳分析方法费时费力。

6)非EPC控制,载气浪费较大。

7)对于数量有限的贵重样品,选用应谨慎。

4、分流歧视:

分流歧视是指气相毛细管柱色谱仪分析中,在一定分流比条件下,不同样品组分的实际分流比不同,造成进入色谱柱的样品组成与原样品组成不同,从而影响定量分析准确度。

(1)造成分流歧视的原因:

分流进样对某些样品适应性差的主要原因是样品气化时失真。造成样品气化失真的原因是多方面的,随着对样品进样的实践和深入研究,人们终于认识到样品的蒸发步骤、隔垫和注射器手动进样等才是造成样品气化失真的根本原因。因此,为了获得满意的重复性和定量精度,除了在设计分流进样结构时尽量减小样品失真,更主要的是实现非失真进样。

1)注射方式影响,如“热针”进样和溶剂消除进样等。

2)进样速度太慢、太快和进样本身不重复等。

3)不均匀气化。由于样品中各组分的极性不同,沸点各异,因而气化速度各不相同。这些导致沸点不同的组分到达分流点时,气化状态可能不完全相同。气化不完全的组分比完全气化的组分可能多分流一些样品。

4)不同样品组分在载气中的扩散速度不同,扩散速度与温度成正比。尽量使样品快速气化是消除分流歧视的重要措施。

5)强极性、不稳定样品在衬管和隔垫表面的吸附和分解等。

6)分流比的大小影响分流歧视。一般来说,分流比越大,越有可能造成分流歧视。在样品浓度和柱容量允许的条件下,分流比小些有利。

7)柱入口处气体粘度的变化和溶剂重新冷凝使柱阻力变化,造成分流比改变。

(2)消除分流歧视的措施:

1)尽量使样品快速气化,包括采用较高的气化温度和合适的衬管(添加经硅烷化处理的石英玻璃棉)。

2)初始柱温尽可能高些。气化温度和柱温差别小,样品在气化室经历的温度梯度小,可避免气化后的样品发生部分冷凝。

3)安装色谱柱时,保证柱入口端超过分流点,保证柱入口端处于气化室衬管的中央(气化室内色谱柱与衬管同轴)。

尽管分流进样有歧视问题,但仍然是GC中最常用的进样方式。实际工作中,分流歧视很难完全消除,只要操作重现,一定程度的歧视是重现的,可通过标准样品的校准来消除歧视效应对定量准确度的影响。

5、操作参数:

气相毛细管柱分析以分流进样作为进样方式,主要是由于它的简易性而不是它的可靠性,因此,在常规分析时被广泛应用。实验表明,对于挥发性或极性相近和沸点低于正二十烷沸点的样品,通过主要操作参数的优化选择,可得到比较满意的定量精度。

(1)气化温度:

气化温度一般选择在接近或等于zui高沸点组分的温度,以保证所有组分能气化。气化温度高可能有利于减小初始谱带宽度,但温度太高可能使样品某些组分分解和降解,反而产生样品歧视。更合理的方法不是提高气化温度而是选用合适的衬管,以增加热容量和样品与衬管接触的表面积。对于未知新样品建立分析方法时,气化温度可从300℃开始试验选择。

(2)分流比:

分流比大小要根据样品浓度和进样量调整,一般范围为1:20~1:200。分流比小时,分流歧视可能小些,但初始谱带会变宽。但分流比小,适合程序升温技术。分流大时,有利于峰形,但分流歧视可能比较严重。在分析要求不高时,选择分流比大些比较有利。实际工作中,要视样品浓度选用合适的分流比后再确定进样量。

随着柱温升高、柱流量变化和气化温度变化等,分流比对针型阀的流量特性有影响,计算分流比和重新调整分流阀时,一定要在色谱柱和分流进样器温度恒定后进行。

(3)载气流量:

载气总流量是载气流量、分流流量和隔垫吹扫气流量的总和。对于配EPC控制的气路,各流量可在较大范围内自动设定调整,但用稳压阀调节柱前压供气时,要注意稳压阀的压力和流量特性。原则上讲,在分析要求允许的情况下,柱前压高些或分流比大些,有利于各流量的稳定和分析重复性。

在柱前压较高时,隔垫吹扫气流量可能超过5mL/min,此时它的分流作用不能忽略。尤其当隔垫密封性能欠佳时,对进样失真的影响会更大。在分析要求允许的情况,可以把吹扫气路关闭操作。

(4)分流点:

分流点是指色谱柱进口、衬管填充物和注射针尖的相对位置。分流点不同对进样歧视程度不同。

为了减小进样歧视,色谱柱入口在气化室中的较佳位置可通过多次试验确定。安装色谱柱时,保证柱入口端超过分流点,保证柱入口端处于气化室衬管的中央(气化室内色谱柱与衬管同轴)。每次重复安装时,一定要严格按相同尺寸安装。

(5)进样量:

进样量一般不超过2μL,最好控制在1μL以下。因为衬管容积有限,液体气化时体积要膨胀数百倍。

进样量还和分流比相关,分流比大时,进样量可大些。

(6)进样速度:

进样速度越快越好,以防样品不均匀气化,保持窄的初始谱带宽度。快速自动进样往往比手动进样的效果好。

(7)柱温:

如果程序升温,初始柱温应高于溶剂沸点,进样后应快速升温。

6、应用:

(1)适用于不能稀释后进行分析的样品(如溶剂)和浓度较高的样品。

(2)适用于绝大部分化学性稳定、可挥发的气体和液体样品(浓度在0.001%~10%,沸点低于正二十烷沸点),特别是一些化学试剂的分析。

(3)在溶剂峰之前有很重要的小峰流出。样品中一些组分在主峰前流出,而且样品不能稀释,分流进样往往是理想的选择(如白酒中甲醇和香味成分的分析)。

(4)进样时间长(如阀进样)的样品分析。

(5)在色谱方法开发过程中,如果对样品组成不是很清楚,应首先采用分流进样。

(6)对于“脏”样品应采用分流进样。因为分流进样时大部分样品被放空,只有小部分样品进入色谱柱,在很大程度上防止了色谱柱污染。

二、不分流进样系统:

不分流进样是在气相毛细管柱色谱仪进样前,分流阀将分流气路关闭30~80s,待气化的样品基本或大部分进入毛细管柱后打开分流气路,将残留在气化室中的样品通过分流气路放空。

分流进样是因为柱容量小和样品浓度高而不得不采用的方法,那么低浓度样品采用不分流进样以提高分析灵敏度就是理所当然的选择了。实际工作中,不分流进样的应用远没有分流进样广泛,只是在分流进样不能满足分析要求时(主要是灵敏度要求),才考虑使用不分流进样。

1、结构:

不分流进样与分流进样采用同一个进样口。不分流进样是将分流气路的电磁阀关闭,使气化的样品基本或大部分进入色谱柱。这样既可提高分析灵敏度,又能消除分流歧视的影响。

(1)载气流路:

不分流进样时,在气化室中气化的含有大量溶剂的样品不可能瞬间进入色谱柱,溶剂峰会严重拖尾,使早流出组分的色谱峰被掩盖在溶剂拖尾峰中,从而使分析变得困难甚至不可能。此现象称为气化室溶剂效应。

1)瞬间不分流进样:

进样开始时关闭分流阀,使系统处于不分流状态,待气化的样品基本或大部分进入色谱柱后开启分流阀,使系统处于分流状态,将残留在气化室中的溶剂气体(包含小部分样品组分)很快通过分流气路放空,从而在很大程度上消除了溶剂峰拖尾现象。分流状态一直持续到分析结束,注射下一个样品时再关闭分流阀。

不分流进样并不是不分流,而是分流与不分流相结合,确定瞬间不分流时间(又称溶剂吹扫时间)往往是分析成败的关键。

2)瞬间不分流时间的确定原则:

瞬间不分流时间的确定依赖于样品性质、溶剂性质、衬管容积、进样量、进样速度和载气流速。

原则上讲,这一时间应足够长,保证绝大部分样品进人色谱柱,避免分流歧视的影响。同时又要尽可能短,最大限度地消除溶剂峰拖尾,使早流出峰的分析更为准确。这显然是矛盾的。实际工作中,瞬间不分流时间要根据样品的具体情况(如溶剂沸点、待测组分沸点和浓度等)和操作条件确定,一般为30~80s,多用45s,可保证95%以上的样品进入色谱柱。

对于高沸点样品,不分流时间长些有利于提高分析灵敏度,而不影响分析准确度。对于低沸点样品,不分流时间要尽可能短些,zui大限度地消除溶剂峰拖尾,以保证分析准确度。

3)确定瞬间不分流时间的方法:

首先确定溶解样品的溶剂、衬管容积、进样量、进样速度和载气流速。

开始时可将这一时间设置的长些(90~120s),以保证全部样品组分进入色谱柱。样品进行分析后,选择一个待测组分的峰面积(该峰的k值应大于5)作为测定指标,该峰面积代表100%的样品进入了色谱柱。

然后逐步缩短不分流时间分别进样分析,计算同一组分在不同溶剂吹扫时间条件下的峰面积与*次分析的峰面积之比,直到比值小于0.95,此时的不分流时间为最短时间。

再进一步微调不分流时间,使同一组分的峰面积达到*次分析时峰面积的95%~99%,此时的瞬间不分流时间即为最优时间。

(2)衬管:

1)样品在不分流衬管中的滞留时间取决于衬管形状、衬管容积、气体速度和样品气化时间。

zui好采用直通式衬管。这主要是为了使样品在气化室中尽可能少稀释,减小初始谱带宽度。衬管容积小些有利,一般为0.25~1mL。

衬管内径比分流进样的小,最好使注射针紧贴在衬管内孔的周围,阻止样品反冲。

当用自动进样器进样时,因进样速度快,样品挥发快,建议采用容积稍大的直通式衬管。

有时采用锥形衬管,使样品聚集到色谱柱上,阻止样品反冲,减少样品与金属表面的接触。

2)对于干净样品,衬管内可不填充玻璃棉。

3)对于“脏”样品,衬管内要填充玻璃棉或石英玻璃棉,以促进样品气化,保证分析重现性,防止不挥发性组分和机械杂质进入色谱柱,保护色谱柱不被污染。

4)由于不分流进样时样品在气化室中的滞留时间比分流进样时长,热不稳定化合物分解的可能性大,衬管和其中填充的石英玻璃棉都必须经硅烷化处理,要及时清洗、更换和重新硅烷化。

(3)柱溶剂效应:

不分流进样时,初始柱温比溶剂沸点低15~30℃,样品在气化室中气化后,大量溶剂带着组分流向低温色谱柱并在柱上冷凝,冷凝在柱上的溶剂与固定液混合,形成比固定液膜厚几倍的溶剂液膜(在柱入口附近zui厚),组分蒸气塞的前沿在溶剂膜上保留较强,随着溶剂的挥发其后沿保留较弱,使峰变窄。此现象称为柱溶剂效应。

不分流进样时,要获得良好的柱溶剂效应必须满足以下条件:

1)溶剂峰一定要在被测组分峰之前流出。

2)样品沸点要足够高,一般在150℃以上。

3)要选择适当的溶剂,如二氯甲烷、氯仿、二硫化碳、己烷和异辛烷等。不宜使用极性和芳香烃溶剂,因为这些物质的气化温度高,虽然宜在柱上冷凝,但在二次气化时会损害原固定液膜,特别是非键合相柱。

4)初始柱温必须低于溶剂沸点15~30℃。

5)进样量一般为1~10μL,常用2~3μL。

6)样品注射时间一般为3~15s。

2、谱带展宽:

气相毛细管柱色谱仪的谱带展宽有时间性谱带展宽和空间性谱带展宽等。

(1)时间性谱带展宽:

不分流进样时,在气化室中气化的含有大量溶剂的样品不可能瞬间进入毛细管柱,溶剂峰会严重拖尾,使早流出组分的色谱峰被掩盖在溶剂拖尾峰中,从而使分析变得困难甚至不可能。这种由于进样时间延长引起的色谱峰展宽称为时间性谱带展宽。时间性谱带展宽可采用柱溶剂效应和热浓缩来抑制。

所谓柱溶剂效应是指进祥时柱温比溶剂沸点低15~30℃,当不分流进样完毕后,打开分流阀,用载气吹扫气化室中残留的溶质和溶剂,同时柱温开始升高,溶剂开始蒸发,溶质以窄的起始谱带开始进行分离的过程。

所谓热浓缩是指进样时柱温比溶质沸点低很多,使溶质冷凝在柱头上,同时柱温比溶剂沸点高很多,使溶剂保留为气态的过程。在此条件下不会出现柱溶剂效应。如果柱温比溶质沸点低150℃以上,热浓缩会有效地把溶质浓缩到很窄的区带上。

(2)空间性谱带展宽:

不分流进样分析中,由于柱溶剂效应使溶剂浓缩成一个窄的区带液层,但溶剂冷凝后形成一个几厘米长的液层。因液层太厚而不稳定,在载气的吹拂下向前方扩散,形成一个溶剂溢流区,溶质也分布于整个溢流区,从而使色谱峰展宽。这种由于溶剂溢流造成的色谱峰展宽称为空间性谱带展宽。空间性谱带展宽可采用保留间隙进样来抑制。

保留间隙柱是接在毛细管色谱柱前的一段未涂固定液的毛细管柱,所有溶质在保留间隙柱中都没有保留作用,即k=0。溶剂溢流区处于保留间隙柱中,溶质随着溶剂的前进和蒸发被浓缩和集中于涂有固定液的色谱柱起始段,从而克服空间性谱带展宽。

保留间隙进样是气相色谱中十分有用的技术。保留间隙柱长度决定于溶剂溢流区长度,因而保留间隙柱长度就决定于样品体积和溶剂性质。当进样量l~2μL时,保留间隙柱长度为0.5~1m。若进样量更大,保留间隙柱相应增长。


推荐
关闭