关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

HPLC故障排除:峰形问题(一)

2020.4.13

1. 峰形
1.1.在RP-HPLC应用之初,峰拖尾就是最常见的峰形问题(拖尾峰是RP-HPLC自出现以来最普遍的峰形问题)。

大多数峰拖尾是由于柱内硅胶颗粒表面上的酸性或离子化硅烷醇基团之间相互作用而导致的。

低纯度硅胶(通常称为“A型”或酸性硅胶)具有高含量的酸性硅烷醇(-Si-OH)基团,其富含的金属杂质(特别是铁和铝)可提供阳离子交换位点,进一步促使这些基团电离成-Si-O-。

这些材料的pKa在pH4-5区域中,这意味着在pH>6时,大部分硅烷醇基团会被电离(已离子化)。

通过提高纯度并降低硅胶的酸度可获得更高纯度的硅胶颗粒(“B型”),并且自引入(其出现)以来,这些硅胶填料的纯度已经得到了改善(有所提高)。

高纯度硅胶的pKa> 8,因此对于大多数色谱柱,在2 碱性化合物极易受到硅醇拖尾(影响而导致拖尾),并且由于大多数样品分子含有碱性氮官能团,所以没有多少(很少有)化合物可以完全对硅醇交互作用免疫(不受硅醇基的影响)。

图1显示了硅醇拖尾的情况。甲苯是一种中性化合物,不会产生硅醇拖尾现象,但图1中剩余(其他)的分析物为强碱性药物。

流动相pH值是6,这是影响分离的另一个因素,它会使纯度较低的硅胶色谱柱出现硅烷醇离子化现象(对于该分析更大的挑战在于流动相pH=6,这一条件下低纯度硅胶色谱柱的硅醇基已离子化)。

低纯度硅胶(“A型”硅胶)(图1a)会与碱发生强烈的相互作用,致使分析物不会从柱上洗脱下来(以至不能从色谱柱中洗脱这些分析物)。

早期的B型材料(图1b)显着改善了峰形,尽管它们均出现严重拖尾现象,但样品中的所有峰形均可见(可以看到样品中所有分析物出峰)。

通过进一步改善(提高)硅胶纯度(图1c),可使峰拖尾降低至可接受的水平。

只要在RP-HPLC中使用含硅烷醇的硅胶,就不可能消除峰拖尾现象。

虽然使用高纯度硅胶色谱柱是改善硅烷醇拖尾的最佳办法,但仍存在其它解决拖尾现象的技术(技术可以减少拖尾)。

近年来,多采用将三乙胺(TEA)(一种小(低)分子量碱)加入到流动相(例如25mM)中的方法改善峰拖尾。

TEA是酸性硅烷醇基团的有力竞争者,但对于当今的高纯度硅胶,几乎无需或很少使用TEA。

图1:

图1. 硅胶纯度和峰拖尾(a) 低-、(b) 中-、和(c) 高-纯度硅胶。

色谱柱:250x4.6mm, 5m;

流动相:80:20 MeOH/25mM KH2PO4(pH 6.0);
流量:1.0 mL/min;

成分:1, 去甲麻黄碱;2, 去甲替林;3, 甲苯;4, 丙咪嗪;5, 阿米替林。

 

1.2.缓冲液或流动相添加剂不足也会导致峰拖尾。

缓冲液主要用来使样品处于(保持)恒定的离子化状态,从而稳定保留情况(时间),并在最大程度上减少因离子相互作用而导致的峰拖尾现象。

缓冲液还可抑制硅胶表面上的硅烷醇基团的电离现象(的硅醇基离子化)。

但是对于低纯度硅胶材料来说,由于其硅烷醇更容易被电离,所以它的挑战性更高(当然,这对于低纯度的硅胶材料是更大的挑战,因为可能更多硅醇基会离子化的)。

添加剂浓度对峰形的影响如图2所示。

在这种情况下,三氟乙酸(TFA)会作为蛋白质样品成分的离子对试剂,也会产生(可提供)低pH流动相以抑制硅烷醇电离。

通常,0.1%TFA可以(作为添加剂)用于蛋白质和肽分离。

如图2a和b所示,该浓度足以在最大程度上改善高纯度和中纯度硅胶柱的拖尾现象。

然而,如果TFA浓度下降(降低)十倍(图2c,d),两个相(两个固定相)的拖尾均会随之增加。高纯度硅胶仍可(仍然)保持可接受的峰形,但中纯度色谱柱的峰拖尾则无法接受。

缓冲液和其它流动相添加剂的一个共同特征是:作用效果(例如峰拖尾的减少、保留时间的稳定)会从低浓度开始(开始显现),并随着浓度的增加而继续作用(增加),但会逐渐(趋平)维持在一个稳定水平。

稳定水平之下的添加剂浓度,可以保持稳定的运行;浓度过高会产生(可能导致)溶解性问题。

对于大多数应用来说,10-25mM内的添加剂已经足够了,但最好根据具体情况确定。

图2. 缓冲液浓度对峰拖尾的影响。

0.1%TFA与(a)高纯度(b)中纯度硅胶柱;0.01%TFA与(c)高纯度和(d)中纯度硅胶柱。

色谱柱:250x4.6mm, 5m, C18 300Å;

流动相:A: 0.1%或0.01%的TFA溶于水中;B: 0.1%或0.01%的TFA溶于ACN;5-70% B,30分钟;

流量:1.0 mL/min, 280nm。

成分(保留顺序):核糖核酸酶A、细胞色素C、全铁转铁蛋白、脱辅基肌红蛋白。


推荐
关闭