关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

气相色谱仪进样系统(六)

2019.12.28

(6)密封盖:

顶空样品瓶的密封盖由金属盖和密封垫组成。

1)金属盖:

金属盖有可多次使用的螺旋盖和一次性使用的压盖。目前多采用一次性使用的铝质压盖。

2)密封垫:

密封垫主要采用硅橡胶、氟橡胶和丁基橡胶材质。

①硅橡胶垫:耐高温性能好。

②氟橡胶垫:惰性好。为防止密封垫对样品组分的吸附,目前多用聚四氟乙烯密封垫。

③丁基橡胶垫:价格低。

密封垫在刺穿一次后可能会漏气而失去保护作用。在制备样品时,要将样品全部加入顶空样品瓶后再密封。需要从一个顶空样品瓶多次进样时,zui好连续进行,不要把扎穿过密封垫的顶空样品瓶放置一段时间后再用。

5、静态顶空进样分析常用技术:

静态顶空进样分析常用技术有多次顶空萃取技术、反吹技术、冷冻富集技术、衍生化反应技术和定量分析技术等。

(1)多次顶空萃取技术:

静态顶空进样一般只对一个样品取样一次。如果在*次取样后,让样品在相同条件下再达到平衡,进行第二次取样,由于已取了一次样,尽管分配系数保持不变,整个样品的组成已发生了变化,第二次顶空气体的组成与*次不同,第二次分析所得相同组分的峰面积会比*次小。因此,作重复进样分析时,zui好同时用几个顶空样品瓶,每个顶空样品瓶进样一次。

若从另一个角度看问题,从同一顶空样品瓶重复取样进行分析,原样品中待测组分的浓度会逐次减小,直到zui后被完全萃取。这样,每次分析所得峰面积之和就对应原样品中该组分的总浓度。由于待测组分zui后被完全萃取,不会有样品基质效应影响分析。这是多次顶空萃取技术的基本思路。

采用多次顶空萃取技术将样品中的待测组分全部萃取完,时间会相当长。多次顶空萃取技术可用于定量分析,多用于理论研究。

(2)反吹技术:

反吹技术是改变气相色谱柱中的载气流动方向,将柱头滞留的高沸点和极性组分吹出色谱柱。反吹技术在静态顶空进样分析中很重要,可缩短分析时间,保护色谱柱。

静态顶空进样的分析对象多为易挥发组分,当对高沸点组分不感兴趣时,可采取反吹技术将其放空。在固体样品的分析中,所用溶剂或分散剂常比待测组分沸点高,采用反吹技术可消除这些溶剂峰。

(3)冷冻富集技术:

当顶空气体中待测组分的浓度太低(可能由于原样品的浓度太低,也可能由于组分的蒸气压太低)或检测器灵敏度不能满足分析要求,需要加大进样体积时,冷冻富集技术是静态顶空进样分析常用的提高灵敏度的方法。

冷冻富集技术与冷柱上进样中的冷冻聚焦技术类似,不同之处是顶空样品是气体,冷阱的作用主要是使这些气体冷凝而富集。冷冻富集主要用于毛细管柱静态顶空进样分析,方法是用液氮或液态二氧化碳使柱箱、色谱柱或色谱柱入口端的一段处于低温,当大体积的顶空气体进入色谱柱时先冷凝下来,然后升高柱温使之气化,使初始样品谱带变窄,从而消除大体积气体很容易使色谱柱超载的问题。通常毛细管柱顶空进样体积为0.25mL左右,采用冷冻富集技术后,进样体积可达1~2mL,使分析灵敏度提高。

(4)衍生化反应技术:

静态顶空进样分析可用于监测产生挥发性产物的反应。通过某些化学反应将极性、不挥发或难挥发的组分变成挥发性组分,然后用气相色谱静态顶空进样进行分析。在静态顶空进样分析中,顶空样品瓶就是一个反应器,只要将反应试剂和必要的催化剂加入到顶空样品瓶中,控制温度和反应时间,可实现在线反应静态顶空进样分析。

(5)定量分析技术:

原则上讲,气相色谱所用的定量方法包括归一化法、内标法和外标法均可用于气相色谱顶空进样分析。但由于气相色谱顶空进样分析主要用于液体或固体样品中挥发性组分的分析,故归一化法极少使用,除非样品为气体或可全部气化并用气相色谱分析。外标法和内标法共同的问题是基质效应。在外标法中,用于测定校正因子的标准样品必须与实际样品的基质相同,这可通过“空白”标样制备来实现。在内标法中,基质效应可通过样品稀释来消除,所选用内标物的理化性质应尽可能接近待测物而使基质效应保持一致。

为了保持标准样品和实际样品的基质的一致性,气相色谱顶空进样分析常采用标准加入法定量,即在待测样品中加入已知量的待测物的标准样品,通过比较标准加入前后峰面积的变化来计算实际样品中待测物的浓度,这样基质就完全一致了。但要注意,在样品中加入待测物的标准溶液后,样品的体积会发生变化而影响相比。因此,在不加标准溶液的样品中也应加入相同体积的溶剂,以确保样品体积的一致。

6、应用:

适用于挥发性组分含量较大的样品的分析。

主要用于在200℃以下可挥发和比较难预处理的样品分析。

特别适合样品中低沸点组分的分析。

如果样品中待分析组分的含量不是很低,较少的气体进样量可满足分析需要,水分又不是很高时,气相色谱静态顶空进样分析是一种非常简便而有效的分析方法。

八、动态顶空进样:

气相毛细管柱色谱仪动态顶空进样是将惰性气体或氮气连续不断地通入液体或固体样品中,将挥发性组分从样品基质中吹扫出来,随气流进入捕集阱,捕集阱采用吸附剂或低温冷阱对吹扫出来的挥发性组分进行捕集,再经热解吸将组分送入气相毛细管柱色谱仪进行分析。这种技术又称吹扫捕集进样或连续气相萃取进样。

1、工作原理:

绝大部分吹扫捕集进样分析采用氦气作为吹扫气,将其通入样品溶液中鼓泡。在持续的气流吹扫下,样品中的挥发性组分随氦气逸出,并通过捕集阱进行捕集。吹扫一定时间,待测组分全部或定量地进入捕集阱后,关闭吹扫气,由切换阀将捕集阱接入气相色谱仪的载气气路,同时,快速加热捕集阱,使组分热解吸后随载气进入气相色谱仪进行分析。通常使用的检测器是ECD和MSD等。

2、结构:

吹扫捕集进样系统由样品瓶、捕集阱、连接管路、阀、捕集阱与色谱柱连接的接口等组成。

(1)捕集阱:

捕集阱由吸附管和吸附剂等组成。

1)吸附管:

在吸附管内样品流经的路径上,若待测组分活性大或在吸附管内壁易冷凝,会使样品有损失或转化为其它物质。

①在80℃时,不锈钢材料对卤代烃具有反应活性。

②聚四氟乙烯材料的温度特性很好,惰性非常好,但小分子卤代烃(如二氯甲烷)对聚四氟乙烯具有渗透性。

③高纯镍材料的惰性好,但若镍材料表面有水,经高温产生活化点,对溴化物会产生明显影响,不能在高于100℃时和水共存的情况下使用。

④弹性硅材料的去活性很好,但脆性较大。如果将它内衬在不锈钢管中使用就成为吹扫捕集技术中zui好的材料,具有很好的去活性、耐用性和热稳定性等,样品不会在吸附管内壁产生残存。

2)吸附剂:

早期的吸附管内填充的吸附剂是Tenax、硅球和活性炭等,它们的捕集效率很好。Tenax可吸附捕集在常温下是液体的化合物,硅球可吸附捕集在常温下是气体的化合物,活性炭可吸附捕集卤代烃(如二氯二氯乙烷)。

样品中的水蒸气对硅球和活性炭产生的干扰非常明显,特别是使用选择性检测器时。吹扫捕集进样分析中,样品中的水与挥发性组分一起被捕集并热解吸进入气相色谱仪,水会影响色谱柱性能,使分辨率变差,基线漂移,噪声增大。20世纪80年代后期,采用疏水性吸附剂(如碳分子筛)来代替硅球和活性炭。疏水性吸附剂在吹扫捕集过程中只吸附很少的水,大部分水被排空,这样热解吸时进入气相色谱仪中的少量水就达到可接受的水平。

选择吸附剂时,既要考虑吸附剂的疏水性,又要考虑吸附能力。吸附剂应具有较大的吸附容量和较高的热解吸效率。

(2)捕集阱与色谱柱连接的接口:

早期的捕集阱与色谱柱连接的接口是一段很短的填充柱,与色谱柱入口垂直连接,吸附管直径与接口一致。此接口与填充色谱柱连接具有安装简单、操作灵活和可使用注射器进行非吹扫捕集直接进样等特点,但毛细管柱不适合使用此接口。因为毛细管柱使用的载气流量较低(1~10mL/min),热解吸出来的待测组分在接口和传输管路中的停留时间较长,并暴露在进口热金属表面的不利环境中。

捕集阱与毛细管柱连接的接口有分流接口和冷聚焦接口等。

1)分流接口:

增加的载气流量有利于待测组分在捕集阱中热解吸。在毛细管柱入口分流,使毛细管柱和检测器的载气流量达到匹配。

2)冷聚焦接口:

若毛细管柱的载气流量小于5mL/min,可采用低温冷阱对热解吸组分进行二次冷聚焦。冷聚焦接口是目前分析低浓度挥发性有机物zui有效的技术之一。

冷聚焦接口通常是一根去活性的石英玻璃毛细管空心柱即聚焦毛细管柱,直接与毛细管色谱柱连接。通常使用压缩泵将液氮输送到聚焦毛细管柱外壁上的区域,温度可降至-160℃。当热解吸组分流经冷聚焦接口时,待测组分被二次浓缩而载气直接通过接口,浓缩完成后停止输送液氮并快速升高接口温度(1000℃/min),将浓缩的组分热解吸出来,全部集中注入毛细管柱中,在柱内形成一段紧凑的样品塞。

3、吹扫捕集进样过程:

吹扫捕集进样过程包括吹扫捕集、热解吸和烘烤清洗过程。

(1)吹扫捕集:

将待测样品注入一个可密封的玻璃样品瓶中,一般注入5mL样品可获得足够的分析灵敏度,如果要求检出下限更低,可注入25mL样品。使用高纯氦气或氮气以恒定的流量、温度和时间对样品进行吹扫,从样品基质中吹扫出来的挥发性组分被吹扫气输送到捕集阱中,挥发性组分被吸附管捕集,吹扫气流过吸附管并排空。

采用吹扫捕集对样品中挥发性组分进行气体萃取,待测组分的萃取效率可用下式计算:

萃取效率 =(通过吹扫捕集得到的待测组分的峰面积/通过直接进样得到的待测组分的峰面积)×100%

萃取总体积是在萃取状态下吹扫气通过样品的总量,可通过吹扫气流量和吹扫时间计算得到。实际工作中,zui优吹扫气流量是在一系列标准样品中和在已知条件下通过实验获得的。

吹扫捕集应兼顾吹扫效率和捕集效率。难于吹扫组分的萃取,可增加吹扫气的总体积以改善吹扫效率。在恒定的吹扫气流量下,可增加吹扫时间以获得较大的回收率。增加吹扫气流量可改善沸点在35℃以下的气体的吹扫效率,但这些气体可能会因为吹扫气流量的增加而通过捕集阱,使捕集效率降低。吹扫气流量和吹扫时间的影响要综合考虑,兼顾所有可吹扫组分的回收率。

捕集效率与待测组分和吸附剂有关,如组分的蒸气压、吸附剂的比表面积、组分与吸附剂之间的相互作用等。通常在较低的温度下,吸附剂对组分的捕集效率会得到改善。为了防止吸附管穿透,捕集温度应在25℃±2℃,不能超过30℃。在常温下捕集某些化合物时,有时需要冷却装置。

吹扫捕集过程中的除水方法主要有渗透法和冷凝法。渗透对样品中水和极性物质的去除非常有效,但测定样品中的极性物质如酮化合物时,不能用渗透法除水。冷凝是目前普遍使用的除水方法,不会影响极性化合物的回收。

吹扫捕集过程中,样品发泡会污染吹扫捕集系统。使用抗发泡剂可抑制样品发泡,但可能会改变样品基质的性质,使分析结果产生未知的误差。将惰性的玻璃微球填充在吹扫气通道中,可防止样品发泡。使用泡沫过滤器不仅不能防止样品发泡,而且容易引进误差。

(2)热解吸:

热解吸是在吹扫捕集后快速加热吸附管,将其中的挥发性组分热解吸出来,然后输送到色谱柱中。此过程要求升温速度快,热解吸温度足够高,热解吸时间足够长,吹扫捕集阱的载气流量适当,使热解吸组分在柱前形成的注射带窄。

载气流量通常为1~10mL/min,吹扫气流量通常大于30mL/min,这就与毛细管柱气相色谱仪产生了载气流量的匹配问题。增加捕集阱的升温速度可改善与毛细管柱气相色谱仪的连接效果。使用管式炉加热吸附管可获得800℃/min的捕集阱升温速度。捕集阱升温速度越快,从吸附管中热解吸组分的速度越快,使热解吸组分形成一个极窄的注射带进入色谱柱中。捕集阱的快速加热减少了组分的热解吸时间,减少了热解吸组分输送到气相色谱仪的时间,减少了载气、水和二氧化碳在热解吸过程中进入气相色谱仪中的量,使峰形得到改善,峰变窄,分析灵敏度提高。

目前,多采用吹扫微捕集技术与毛细管柱气相色谱仪联用分析测定低浓度挥发性有机物。吹扫微捕集技术使处理的样品量减少,使样品中的水和其它干扰物质的影响减少,使热解吸出来的样品量减少,可将吹扫捕集系统直接与毛细管柱气相色谱仪在线联用。

(3)烘烤清洗:

吸附管中的吸附剂对挥发性组分具有可逆的吸附作用,可通过吸附和热解吸重复使用。为了将热解吸后吸附管中可能残存的样品除去,在热解吸组分进行色谱分离和测定的同时,对吸附管进行清洗,使吸附管可对下一个样品进行吹扫捕集,此过程称为烘烤清洗。

烘烤清洗通常采用升高温度和高纯载气吹扫的方法。烘烤清洗时的载气流动方向多采用与热解吸时的载气流动方向相反,烘烤一般时间大于5min。如果烘烤清洗时载气的流动方向与热解吸时的载气流动方向相同,需在较高温度下烘烤较长时间。

4、特点:

(1)优点:

1)选择性高。

2)灵敏度高。

3)重复性好。

4)无溶剂萃取,操作简便。

5)基体干扰小。

6)样品不需要预处理,适用于多种样品形态。

(2)缺点:

吹扫捕集进样分析在定量测定方面比较耗时和费力。

5、操作参数:

动态顶空进样的操作参数有吹扫温度、吸附温度、热解吸温度、连接管路温度、吹扫气流量、热解吸载气流量和吹扫时间等。

(1)吹扫温度:

水溶液大多在常温下吹扫。为了缩短吹扫时间可加热样品,但温度升高会增加水的挥发。

非水溶液的吹扫温度可高些。

(2)吸附温度:

吸附温度一般为常温。对不易吸附的气体可采用低温冷阱技术,即用冷气、液态二氧化碳或液氮控制捕集阱的温度。

(3)热解吸温度:

热解吸温度根据样品和吸附剂性质确定。

(4)连接管路温度:

连接管路温度应足够防止样品冷凝。环境样品分析中,连接管路温度一般为80~150℃。

(5)吹扫气流量:

吹扫气流量取决于样品中待测组分的浓度、挥发性、与样品基质的相互作用(如溶解度)和其在捕集阱中的吸附作用等。

用氦气时,流量为20~60mL/min。用氮气时可稍高些,但氮气在水中的溶解度比氦气大,吹扫效果不及氦气。

吹扫气流量太大会影响组分的捕集,造成组分损失。

(6)热解吸载气流量:

热解吸载气流量主要取决于色谱柱。用大内径毛细管柱时,载气流量为5~10mL/min。用常规毛细管柱时,要按分流或不分流模式设置载气流量。

(7)吹扫时间:

吹扫时间根据样品确定。原则上,吹扫时间越长,分析重现性和灵敏度越高。但考虑到分析时间和工作效率,应在满足分析要求前提下,选择尽可能短的吹扫时间。实际工作中,可通过测定标准样品的回收率确定吹扫时间。

如要测定废水中的苯和乙苯等污染物,可用未被污染的干净水作“空白”样品,定量加入待测物,然后通过实验绘制不同吹扫时间的回收率曲线。通常要求回收率>90%,环境分析中吹扫时间一般为10min左右。


推荐
热点排行
一周推荐
关闭