关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

定量蛋白质组学质谱采集技术进展(四)

2020.5.18

无论是相对定量还是绝对定量方法,DIA很好地克服了DDA鸟枪法和SRM目标监测的种种不足, 在定量蛋白质组学中具有良好的应用前景。然而,目前DIA 方法的循环时间仍然较长,只能与纳流液相联用,并使用较长的梯度以获得足够的色谱峰宽,限制了DIA 的应用范围。这也是DIA 技术下一步需要解决的问题。

 

20172414476860.jpg

 

图7WiSIM-DIA 与Full MS-DIA 原理[57] :(A) WiSIM-DIA 采集原理; (B) Full MS-DIA 采集原理

Fig. 7Schematic elucidation of wide isolation-SIM (WiSIM)-DIA and Full MS-DIA[57] : (A) Workflow of WiSIM-DIA; (B) Workflow of Full MS-DIA

 

5 总结与展望

 

基于报告离子定量的同重同位素标记、目标离子监测和数据非依赖采集已成为定量蛋白质组学的主要技术手段,表1 总结和比较了这3 种方法的原理和异同。定量蛋白质组学的飞速发展为质谱技术带来挑战,基于稳定同位素标记的相对定量和基于SRM 的绝对定量都面临着复杂基质的严重干扰和通量不足等局限(表1)。而近来一系列高分辨质谱新技术的发展为解决这些问题带来希望。其中,同步母离子选择和质量亏损标记有效解决了相对定量的干扰和通量问题; 平行反应监测及多重累积技术提高了SRM 的选择性,成为绝对定量的新途径; 数据非依赖性采集兼具DDA 与SRM 的优势,多重累积和三合一质谱技术使DIA 的扫描步长进一步缩小,能更有效地使DIA 技术应用于高通量的定量蛋白质组学。未来,这些新技术将逐渐取代传统质谱技术,越来越多地应用到定量蛋白质组学中,为解决诸如蛋白质相互作用、临床标志物研究等领域最棘手的问题带来新的手段和突破。

 

表1 定量蛋白质组学主要技术的原理与进展

Table 1 Principle and progress of quantitative proteomic methods

 

201724144758622.jpg

 

References

1 Ong S E, Mann M. Nat. Chem. Biol. , 2005, 1(5): 252-262

2 Veenstra T D. J. Chromatogr. B, 2007, 847(1): 3-11

3 ZHOU Yuan, SHAN Yi -Chu, ZHANG Li -Hua, ZHANG Yu -Kui. Chinese Journal of Chromatography, 2013, 31(6):496-502

周愿, 单亦初, 张丽华, 张玉奎. 色谱, 2013, 31(6): 496-502

4 Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Anal. Bioanal. Chem. , 2007, 389(4): 1017-1031

5 ZHU Jin -Lei, ZHANG Kai, HE Xi -Wen, ZHANG Yu -Kui. Chinese J. Anal. Chem. , 2010, 38(3): 434-441

朱金蕾, 张锴, 何锡文, 张玉奎. 分析化学, 2010, 38(3): 434-441

6 Lange V, Picotti P, Domon B, Aebersold R. Mol. Syst. Biol. , 2008, 4: 222

7 Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Mol. Cell. Proteomics, 2002, 1(5):376-386

8 Capelo J L, Carreira R J, Fernandes L, Lodeiro C, Santos H M, Simal -Gandara J. Talanta, 2010, 80(4): 1476-1486

9 Boersema P J, Raijmakers R, Lemeer S, Mohammed S, Heck A J. Nat. Protoc. , 2009, 4(4): 484-494

10 Koehler C J, Strozynski M, Kozielski F, Treumann A, Thiede B. J. Proteome Res. , 2009, 8(9): 4333-4341

11 Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C. Anal. Chem. , 2003, 75(8): 1895-1904

12 Ross PL, Huang Y N, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet -Jones M, He F, Jacobson A, Pappin DJ. Mol. Cell. Proteomics, 2004,3(12): 1154-1169

13 Karp N A, Huber W, Sadowski P G, Charles P D, Hester S V, Lilley K S. Mol. Cell. Proteomics, 2010, 9(9):1885-1897

14 Ow S Y, Salim M, Noirel J, Evans C, Rehman I, Wright P C. J. Proteome Res. , 2009, 8(11): 5347-5355

15 Ting L, Rad R, Gygi S P, Haas W. Nat. Methods, 2011, 8(11): 937-940

16 ZHAO Yan, YING Wan -Tao, QIAN Xiao -Hong. Chem. Life, 2008, 28(2): 210-213

赵焱, 应万涛, 钱小红. 生命的化学, 2008, 28(2): 210-213

17 Sherman J, McKay MJ, Ashman K, Molloy MP. Proteomics, 2009, 9(5): 1120-1123

18 Abbatiello SE, Mani DR, Keshishian H, Carr SA. Clin. Chem. , 2010, 56(2): 291-305

19 Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B. Mol. Cell. Proteomics, 2011, 10(2): M110. 002931

20 Cima I, Schiess R, Wild P, Kaelin M, Sch俟ffler P, Lange V, Picotti P, Ossola R, Templeton A, Schubert O, Fuchs T, Leippold T, Wyler S, Zehetner J, Jochum W, Buhmann J, Cerny T, Moch H, Gillessen S, Aebersold R, Krek W. Proc.Natl. Acad. Sci. USA, 2011, 108(8): 3342-3347

21 Picotti P, Bodenmiller B, Mueller L N, Domon B, Aebersold R. Cell, 2009, 138(4): 795-806

22 Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K. Anal. Chem. , 2010, 82(15):6549-6558

23 Thingholm T E, Palmisano G, Kjeldsen F, Larsen M R. J. Proteome Res. , 2010, 9(8): 4045-4052

24 McAlister G C, Nusinow D P, Jedrychowski M P, W俟hr M, Huttlin E L, Erickson B K, Rad R, Haas W, Gygi S P. Anal.Chem. , 2014, 86(14): 7150-7158

25 Wuhr M, Haas W, McAlister G C, Peshkin L, Rad R, Kirschner M W, Gygi S P. Anal. Chem. , 2012, 84(21):9214-9221

26 Wenger C D, Lee M V, Hebert A S, McAlister G C, Phanstiel D H, Westphall M S, Coon J J. Nat. Methods, 2011,8(11): 933-935

27 Goeringer D E, Asano K G, McLuckey S A. Anal. Chem. , 1994, 66(3): 313-318

28 Viner R, Bomgarden R, Blank M, Rogers J. 61st ASMS, 2013, Poster W617

29 Blank M, Bomgarden R, Rogers J, Jacobs R, Fong J, Puri N, Zabrouskov V, Viner R. 61st ASMS, 2013, Poster Th449

30 Weekes M P, Tomasec P, Huttlin E L, Fielding C A, Nusinow D, Stanton R J, Wang E C, Aicheler R, Murrell I,Wilkinson G W, Lehner P J, Gygi S P. Cell, 2014, 157(6): 1460-1472

31 Dephoure N, Gygi S P. Sci. Signal, 2012, 5(217): rs2

32 Werner T, Becher I, Sweetman G, Doce C, Savitski M M, Bantscheff M. Anal. Chem. , 2012, 84(16): 7188-7194

33 McAlister G C, Huttlin E L, Haas W, Ting L, Jedrychowski M P, Rogers J C, Kuhn K, Pike I, Grothe R A, Blethrow J D, Gygi S P. Anal. Chem. , 2012, 84(17): 7469-7478

34 Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski M M. Anal. Chem. , 2014, 86(7): 3594-3601

35 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 9(81): 148-158

36 Karlsson C, Malmstrom L, Aebersold R, Malmstrom J. Nat. Commun. , 2012, 3: 1301

37 Gallart -Ayala H, Moyano E, Galceran M T. J. Chromatogr. A, 2008, 1208(1 -2): 182-188

38 Mart侏nez -Villalba A, Moyano E, Martins C P, Galceran M T. Anal. Bioanal. Chem. , 2010, 397(7): 2893-2901

39 Fortin T, Salvador A, Charrier J P, Lenz C, Bettsworth F, Lacoux X, Choquet -Kastylevsky G, Lemoine J. Anal. Chem. ,2009, 81(22): 9343-9352

40 Peterson A C, Russell J D, Bailey D J, Westphall M S, Coon J J. Mol. Cell. Proteomics, 2012, 11(11): 1475-1488

41 Schiffmann C, Hansen R, Baumann S, Kublik A, Nielsen P H, Adrian L, von Bergen M, Jehmlich N, Seifert J. Anal.Bioanal. Chem. , 2014, 406(1): 283-291

42 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 81: 148-158

43 Tsuchiya H, Tanaka K, Saeki Y. Biochem. Biophys. Res. Commun. , 2013, 436(2): 223-229

44 Tang H, Fang H, Yin E, Brasier A R, Sowers L C, Zhang K. Anal. Chem. , 2014, 86(11): 5526-5534

45 Gallien S, Bourmaud A, Kim S Y, Domon B. J. Proteomics, 2014, 100: 147-159

46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012,11(6): O111. 016717

50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013,13(8): 1247-1256

51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R,Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev. , 2013: 10. 1002/ mas. 21400

54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem. , 2013, 85(24):11710-11714

56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targe -ted Protein Quantification Using WiSIM -DIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem. , 2014, 42(12): 1750-1758

张伟, Reiko Kiyonami, 江峥, 陈伟. 分析化学, 2014, 42(12): 1750-1758

58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res. , 2014, doi: 10. 1021/ pr5003017

 

Progress in Mass Spectrometry Acquisition Approach for Quantitative Proteomics

 

ZHANG Wei*

(Thermo Fisher Scientific, Shanghai 201206, China)

 

Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the in -depth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/ capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection ( SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition(DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

 

Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

 

(Received 10 September 2014; accepted 18 October 2014)


推荐
热点排行
一周推荐
关闭