关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

深度学习在雷达中的研究综述(二)

2020.10.06

其中, J(w,b) 为对应自编码器代价函数, β

 为控制系数性惩罚因子权重。

2.3 DBN基本原理

DBN是一个概率生成模型,其建立一个观测数据与标签之间的联合分布。并且DBN由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)组成,典型的DBN结构如图4所示。该网络由隐层和可视层组成,且层间存在连接,层内单元不存在连接。

R18040-4.jpg图 4 DBN结构示意图Fig.4 Typical DBN structure

在典型的RBM中,其能量可表示为:

R18040_E6.png

其中, b

 , c , w 分别为对应可视层、隐层和可视层与隐层之间连接的权重, Nv 为可视层节点数, Nh 为隐层节点数, v 为可视层输出, h 为隐层输出。则进一步表示出隐层神经元 hj

 被激活的概率为:

R18040_E7.png

其中, σ

 为激活函数。同一层神经元之间存在独立性。所以,概率密度函数满足:

R18040_E8.png

在训练过程中,当一条数据赋给可视层时,计算出每个隐层的开启概率, P(hj|x),j=1,2,⋅⋅⋅,Nh

 ,进而比较其与阈值关系,大于阈值则激活,否则不激活。实现通过隐层计算出了可视层,之后通过对比散度算法对网络参数进行学习。具体地,首先,将 x 赋给可视 v1 ,得到隐层的激活概率为 P(h1|v1) ,在该概率密度函数中采取Gibbs抽样抽取一个样本 h1∼P(h1|v1) ;之后,通过 h1 重构可视层,计算可视层中每个神经元被激活的概率P(v2|h1) ,同样,从计算得到的概率分布中采取Gibbs抽样抽取一个样本 v2∼P(v2|h1) ;最后,通过 v2 计算隐层中每个神经元被激活的概率 h2∼P(h2|v2)

 ,以此类推。权值更新为:

R18040_E9.png
R18040_E10.png
R18040_E11.png

若干次训练后,隐层不仅能准确地表示可视层特征,而且还能还原可视层。

3 基于深度学习的SAR图像处理研究

通过上一节的介绍,可对典型的CNN, SAE, DBN算法基本处理过程具备一定了解。在此基础上,对雷达数据进行相应的处理成为该领域的研究热点。通过上述深度学习算法完成相应的雷达数据处理任务,并与传统方法进行对比。进一步验证了深度学习方法在进行自适应特征提取中存在的显著优势。

在雷达领域中,SAR是一种兼具距离向和方位向高分辨能力的成像雷达。其一方面作匀速直线运行,一面以一定的脉冲重复频率发射并接收信号。在距离向方面,它利用发射大时间带宽积的线性调频信号,采用脉冲压缩技术来获取高分辨率;在方位向,它利用目标和雷达相对运动形成的轨迹构成一个合成孔径,以取代庞大的阵列实孔径,获得方位向高分辨率。此外,SAR成像技术相对于光学遥感技术,主要具有以下优点:SAR利用地表反射的主动式电磁波成像,不需要传统光学成像的发光源,能够实现全天时、全天候的对地观测;当雷达波长选择恰当时,SAR能够穿透云雾、植被等覆盖物,观测到被隐藏的地物;SAR可以是多极化、多频段的,使图像具有丰富的相位等极化信息,有助于SAR图像的地物分类。鉴于SAR的众多优点,其在军事和民用领域得到广泛应用。

近些年,随着深度学习的研究热度逐渐增加,将深度学习方法运用到SAR图像处理成为新的研究热点。本节主要介绍深度学习算法在SAR图像处理中的研究情况。在该领域中,上一节主要介绍的CNN, DBN及SAE均在该领域均取得一定的研究成果。

3.1 基于CNN的SAR图像处理研究

基于CNN的SAR图像处理最广泛的应用主要集中在目标识别中,且典型的算法验证数据库为MSTAR数据,通过对该数据进行识别处理,从而对比不同方法的识别效果。该数据库包含10类目标,其示意图如图5所示。通过调研发现,基于CNN对SAR图像进行目标类型识别基本保证获得相比于传统目标识别方法更高的识别率。例如,南京理工大学的袁秋壮等人将CNN应用于SAR目标识别[40],该CNN网络包括2层卷积层,2层下采样层,3层dropout,2层全连接层。最终对MSTAR数据进行分类,平均识别率达到96.29%。此外,文献[41]选择对舰船数据进行训练及测试,其对4个场景下的SAR数据进行包含2层卷积层、2层全连接层的CNN训练,保证该网络对4个场景舰船SAR图像均具有稳定的识别能力,进而对一个场景下舰船进行识别测试。结果显示,该网络能从非货船目标和海杂波中提取货船目标。在上述文献中,由于缺少在不同舰船姿态情况下的舰船数据,因此训练得到的CNN对不同舰船姿态SAR图像适应性较差,导致对于不同姿态的舰船识别率还有待提高。为了解决该问题,需要通过对训练数据进行完善,增加不同舰船姿态SAR图像情况。

R18040-5.jpg图 5 MSTAR数据示意图Fig.5 Illustration of MSTAR data

为了解决训练数据量不足的问题,有学者提出通过一系列处理提升用于测试和训练的SAR质量,使训练图像能够尽量完备地代表实际待分类的图像情况。例如,西安电子科技大学的陈波团队[42]对MSATAR图像分别进行了目标位置的平移,加入随机斑点噪声的操作,之后再进行识别测试。在原始数据、目标位置平移、加入斑点噪声3种情况下,通过CNN得到的识别率与传统SVM等方法进行比较。CNN方法识别率分别为93.16%,82.40%以及91.89%。而传统SVM方法下,识别率仅为75.68%,17.05%以及70.58%。其中,由于对目标位置进行了平移变换,传统SVM方法识别率下降剧烈,而CNN方法识别率相对于原始数据,识别率仅下降10%左右,即说明CNN方法相对传统方法具有更优的鲁棒性。哈尔滨工业大学的朱同宇[43]在经典CNN模型基础上引入ReLU激活函数、L2正则化、批量归一化以及Dropout等现代深度学习技术,并使用目标镜像、目标位移、目标旋转以及加入噪声这4种SAR图像的数据增强方法,有效地抑制了过拟合问题。此外,其分别通过MSTAR实测数据集和OKTAL仿真数据集数据进行网络性能测试。其中,在运用MSTAR数据,且在原始测试集识别率达到98.22%的情况下,经过4种扩充测试集,保证准确率仍在90%以上。同样在对OKTAL仿真数据集进行测试时,平均识别率达到94.51%。可见,对于CNN方法而言,在一定程度下鲁棒性优于传统识别方法,且当训练样本与测试样本更加接近时,所训练网络特征提取越准确,识别率优势明显。此外,文献[44]提出通过两级CNN识别虚假目标。第1级CNN输入数据为原始SAR图像,且包含4类目标,每类分别由真实和虚假目标组成;第2级CNN输入数据为对阴影进行增强的处理后图像,每类目标的真实和虚假目标分别为两类,即完成8类目标的识别。文献[45,46]均对包含光学图像和SAR图像两模态数据进行CNN目标识别。其中,文献[45]通过对云的光学图像、SAR图像进行CNN分类,获得天气情况。文献[46]对两模态数据分别进行不同通道的CNN特征提取,之后将获取的两通道特征图进行全连接处理,进行分类器分类,即实现多模态数据分类识别。文献[47]通过CNN对TerraSAR-X高分辨图像进行分类,实现货船、游轮、直升机、平台以及港口的分类。在分类前,对感兴趣区域需进行检测预处理。

另外,极化SAR数据相比于单通道SAR,更能体现雷达的入射角、SAR图像噪声等信息,因此,应用场景更加广泛。文献[48–52]则对于极化SAR数据进行CNN处理,实现识别效果。其中,文献[48]通过对双极化SAR数据进行3D-CNN处理,实现对海水浓度进行判断,从而对由于冰川造成航船行驶的危害进行预警。文献[49]通过对多通道SAR数据进行6维实向量提取,然后对该6维实向量进行CNN分类。其中,对于极化SAR而言,其可表示为3×3的相干复矩阵 T

 :

R18040_E12.png

其中,对应的6维实向量分别为:

R18040_E13.png

其中, A

 为所有极化通道的总散射功率, SPAN=T11 +T22+T33 , B 和 C 分别为 T22 和 T33 的归一化功率比, D , E 和 F

 分别为相关系数。对于该6维实向量进行包含2层卷积层,2层最大池化层,1层全连接层和softmax分类器的CNN架构建立。并且分别对典型的San Francisco和Flevoland多极化SAR数据库中的数据进行分类处理,San Francisco数据在训练和识别部分分别获得的识别率为99.43%和90.23%,Flevoland数据的训练和识别准确率分别为99.20%和97.66%。此外,复旦大学的徐丰、王海鹏、金亚秋提出对极化SAR数据进行复数CNN(Complex Value-CNN, CV-CNN)识别,文献[50]对同样的Flevoland数据进行包含2层卷积层,1层池化层以及1层全连接层的CV-CNN进行地物目标分类,平均识别率达到95.97%。文献[51]则分别将实数CNN (Real Value-CNN, RV-CNN)与CV-CNN进行识别性能上的对比。两模型均包含2层卷积层,1层池化层,1层全连接层,且均对Flevoland数据进行分类,准确率分别为97.3%和99.0%。可见,针对极化SAR数据直接在复数域进行CNN处理效果稍优于实数域情况。

此外,由于传统CNN模型针对SAR目标识别处理问题仍存在提升空间,尤其是网络训练存在一定的资源浪费,训练效率较低。其中,文献[52]提出一种全卷积神经网络(All-Convolutional Neural Network, ACNN),即在传统CNN模型下,将全连接层替换为稀疏连接层,从而针对MSTAR数据进行10类目标分类,识别率达到99.13%。该文献方法主要用于应对网络资源浪费的问题。在实际训练结果中可能存在部分权值、偏置参数接近0的情况,该部分对目标识别未起到任何作用,造成资源一定程度的浪费。此外,SAR图像质量本身受相干斑噪声、几何畸变和结构缺失等因素的严重影响,该因素导致人工标注困难,这使CNN的泛化能力急剧下降。针对这个问题,上海交通大学的赵娟萍等人[53]提出基于概率转移模型的CNN (Probability Transition CNN, PTCNN)方法,建立对带噪声的图像标记与无噪声情况之间的概率转移模型,建立噪声标记转移层,该网络能够增强带噪声标记情况下分类的鲁棒性。文献[54,55]通过CNN对SAR图像进行去斑点噪声处理,经过该处理后,图像质量明显提升,减小噪声对SAR图像的干扰,便于后续分类识别问题研究。其中,文献[54]将原始带噪声的SAR图像转换到log域,并由于斑点噪声属于乘性噪声,在log域减去通过深度网路学习到的噪声,并最终通过exp处理获得去斑后SAR图像。其中,斑点噪声为网络的学习目标,通过对去噪后图像的图像质量进行视觉观察和参数评价,可以发现图像质量提升明显。但是,该文献方法进行的对数-指数转换处于网络外的处理,为了进一步减少网络学习外的处理过程,文献[55]直接进行端对端的斑点噪声学习。其借鉴残差网络建立方法,将带噪声SAR图像与学习噪声相除,得到去噪后图像,且通过去噪后图像与无噪声图像之间差距作为网络损失函数,迭代更新网络参数。通过该方法进行的SAR图像去噪效果更优。

在基于CNN的类型识别方面,仍存在大量衍生网络的研究。文献[56]实现基于SAR图像的灾后地质损失情况快速评估网络结构。其分为区域选择和损失类型识别两部分。在区域选择部分,其通过CNN衍生得到的SqueezeNet方法[57]提取受灾区域。该网络的创新点为将网络分为squeeze层与expand层。其中squeeze层通过一个1×1卷积核进行卷积,expand层是通过1×1和3×3卷积核进行卷积,expand层中,把1×1和3×3得到的feature map 进行连接。其整体思想是图像的分辨率是不变的,仅改变特征图的维数,即通道数。对于区域筛选结果进行基于WRN (Wide Residual Network, WRN)[58]的损失类型识别。该网络是以CNN为基础,衍生出的ResNet的改进网络。针对在训练过程中,仅很少的残差模块能学到有用的表达,而大部分残差模块并不对最终网络分类构成影响,对网络进行宽度提升,深度减小的处理。

此外,在SAR图像目标分割领域,虽然其研究不如目标识别那样广泛,但仍有学者借鉴CNN方法实现目标分割。其中,西安电子科技大学的于文倩[59]对CNN算法的结构进行粒子群优化(Particle Swarm Optimization, PSO)改进,调整网络结构,形成一种基于超像素和正交PSO修正深度学习的图像分割方法。实验表明,该方法不仅能够实现SAR图像的目标分割,同时能够加快网络学习速度。


推荐
关闭