关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

微生物学检验基本技术(九)

2021.4.27

3.16S rRNA同源性分析
(1) rRNA-DNA杂交:变性rRNA与变性DNA混合时,rRNA与其互补的DNA链形成杂交双链,rRNA分子与异源DNA杂交时,也能在其同源区形成互补双链,这种杂交双链的稳定性与其同源性成正相关,适于细菌属及属上水平的分类研究。现最常用的是硝酸纤维膜结合法。
(2)16S rRNA序列测定:rRNA分子具有高度保守性,在所有的细胞生物中都存在,在长期的进化中,16S rRNA的总碱基数有所不同,保守的部分使不同序列很容易相互对齐进行比较。1985年Lane等提出了改良的Sanger双脱氧链终止法测定rRNA序列,以rRNA为模板,以一个或多个寡核苷酸链做引物(与rRNA分子上的一段保守区域互补的15~20个核苷酸),用反转录酶合成反转录DNA。随着PCR技术的成熟,出现了利用PCR技术扩增16S rRNA基因(rDNA),然后采用Sanger法分析rDNA序列的方法,该法比前者更方便。当前的细菌分类要求测定16S rRNA基因的全序列来进行比较。16S rRNA基因序列分析技术是建立系统分类的主要技术,有人建议DNA相关性≥70%,16S rRNA序列差异≤1%~1.5%的细菌属于同一种,这使细菌的种有一个稳定和统一的标准。

二、分子生物学技术在细菌鉴定中的应用
十九世纪,细菌的鉴定主要依靠细菌的表型特征,因耗时长,往往耽误了对疾病诊断与治疗。随着分子生物学技术的发展及在临床微生物学检验中的应用,为微生物学实验室对细菌的快速鉴定,尤其是对难分离细菌的快速鉴定,提供了有利条件。目前在细菌鉴定中应用的分子生物学技术主要有核酸探针和核酸扩增技术等。

1.核酸探针技术
应用核酸探针技术检测病原微生物核酸是临床诊断学的重大发展,其原理是用带有酶、化学荧光物、放射性核素或生物素标记的已知序列特定DNA片段(称为探针),在一定条件下,按碱基互补原则探针与待测标本中的核酸杂交,通过对杂交信号的检测,从而鉴定标本中有无相应的病原微生物基因及其分子大小。常用核酸探针技术有固相杂交(斑点杂交、原位杂交、Southern印迹、Northern印迹等。)和液相杂交技术。
核酸探针适用于直接检出临床标本中的病原微生物,不受非病原微生物的影响,因此对某些尚不能分离培养或很难分离培养的微生物的检测具有重要的意义。随着探针标记的不断改进,检测试剂盒商品化,操作更简便易行。

核酸扩增技术
核酸扩增(又称基因或DNA扩增)技术是体外酶促合成DNA片段的新方法,其原理类似于DNA的体内半保留复制。主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成。即在高温下(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人式合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物的3`端为合成的起点,以单核苷酸为原料,沿模板以5` 3`方向延伸,合成DNA新链。这样每一双链DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使人工合成的引物间的DNA特异区段拷贝数扩增一倍。经过上述25~40个循环后,靶序列可以扩增成106~108。

核酸扩增技术(或称聚合酶链反应技术,PCR)具有高敏感性、高特异性、简便、快速等特点,临床实验室常用PCR技术来检测标本中某些微生物,尤其是对难以培养微生物的检测。其它用于检测微生物的PCR技术还有:RT-PCR、巢式PCR、多重PCR和随机引物PCR等。核酸扩增技术在临床微生物学检验中的应用见表6-4-2。

表6-4-2 核酸扩增技术在临床微生物学检验中的应用

微生物种类 核酸扩增技术 应 用
金黄色葡萄球菌 多重PCR 对mecA基因检测
凝固酶阴性葡萄球菌 多重PCR 对mecA基因检测
肺炎链球菌 PCR 自溶酶和青霉素结合酶的检测
化脓性链球菌 PCR M蛋白基因的菌株分型

淋病奈瑟菌 LCR 尿道分泌物标本直接检测
百日咳杆菌 PCR、巢式PCR 临床标本检测
结核分枝杆菌
PCR、SDA、Qbeta 肺结核的诊断、呼吸道标本检测、临床标本直接检测
鸟分枝杆菌复合群 PCR 鸟分枝杆菌和胞内分枝杆菌的区别
白喉棒状杆菌 PCR 产毒菌株的检测
肠致病性大肠埃希菌 多重PCR 产毒菌株检测
伤寒、副伤寒沙门菌 PCR 耐药质粒分型和检测
幽门螺杆菌 多重PCR 胃活检组织细菌检测
小肠结肠炎耶尔森菌 PCR 菌株分型
弯曲菌属 PCR 通过16s rRNA鉴定
杜克雷嗜血杆菌 多重PCR 生殖道溃疡病人的直接检测
嗜肺军团菌 PCR 与爆发相关菌株的分型
金氏杆菌属 PCR 临床标本鉴定
念珠菌属 PCR 通过“DNA”指纹鉴定
梅毒螺旋体 多重PCR 生殖道溃疡标本直接检测
伯氏螺旋体 巢式PCR 治疗前、中、后检测
问号状钩端螺旋体 PCR 钩端螺旋体血清型的鉴定
CDC group Ⅳ 群 PCR 分型
沙眼衣原体 PCR 无症状病人的诊断
三、分子生物学技术在细菌药敏试验中的应用
分子生物学技术在检测耐药基因方面日益受到重视。临床上可用PCR方法检测耐药基因,来判断待检菌对某种抗菌药物是否具有耐药性。但某些沉默耐药基因,如不表达相应产物,则可能不表现耐药表型。现在已有检测耐药基因的DNA探针和PCR商品化试剂盒供应,但多用于实验研究,常规工作中开展较少。目前能检测的耐药基因有:
β-内酰胺类
mecA、blaTEM、blaROB-1、blaSHV、blaIMP、blaMIR-1、blaOXA、blaPER-1、blaPER-2、blaOXY-1、blaOXA-10/11。
氨基糖苷类
aph(3’)—Ⅲ、aph(3’)—Ⅵ、ant(2〃)Ia、ant(4’)-Ia、aac(3) -Ia、acc(6’)-Ia、aac(3)-Va、aac(6’)-aph(2〃)、ant(4’)、ant(6’)-Ia、aac(6’)-Ic、aac(3)-Ib、aad(2〃)-Ia、ant(6)-I、aph(2〃)-Ic。
氯霉素
catP、catQ、catD、catI
环内酯类
ereA、ereB、ermA、ermAM、ermC、ermF、smp、mphA、mefA、vat。
磺胺类
sulⅠ、sulⅡ,sulA。
四环素
tet(A)、tet(C)、tet(D)、tet(K)、tet(L)、tet(M)、tet(O)、tet(P)、tet(S)、tet(Q)、tet(U)、tetA(P)。
甲氧苄啶
dhfrⅠ、dhfrⅡ、dhfrⅢ、dhfrⅤ、dhfrⅦ、dhfrⅨ、dhfrⅩ、dfrA、folH、dhfrⅧ。
8.糖肽类
vanA、vanB、vanB2, vanC1、vanC3、vanD。
9.喹诺酮类
gyrA、gyrB、parE。
10.乙胺丁醇
embB。
11.吡嗪酰胺
pncA。
12.利福平
rpoB。
13.链霉素
rpsL、rrs。
14.异烟肼
katG、inhA、ahpC。

第六节 自动化技术在微生物检验中的应用

微生物鉴定的自动化技术近十几年得到了快速发展。数码分类技术集数学、计算机、信息及自动化分析为一体,采用商品化和标准化的配套鉴定和抗菌药物敏感试验卡或条板,可快速准确地对临床数百种常见分离菌进行自动分析鉴定和药敏试验。目前自动化微生物鉴定和药敏分析系统已在世界范围内临床实验室中广泛应用。本节简要介绍有关情况。

一、微生物数码鉴定法
早在七十年代中期,一些国外公司就研究出借助生物信息编码鉴定细菌的新方法。这些技术的应用,为医学微生物检验工作提供了一个简便、科学的细菌鉴定程序,大大提高了细菌鉴定的准确性。目前,微生物编码鉴定技术已经得到普遍应用,并早已商品化和形成独特的不同细菌鉴定系统。如API、Micro-ID、RapID、Enterotube和Minitek等系统。这种鉴定系统是自动化鉴定系统的基础。

( 一)数码鉴定法基本原理
数码鉴定是指通过数学的编码技术将细菌的生化反应模式转换成数学模式,给每种细菌的反应模式赋予一组数码,建立数据库或编成检索本。通过对未知菌进行有关生化试验并将生化反应结果转换成数字(编码),查阅检索本或数据库,得到细菌名称。其基本原理是计算并比较数据库内每个细菌条目对系统中每个生化反应出现的频率总和。随着电脑技术的进步,这一过程已变得非常容易。
1.简要介绍计算步骤:
(1)出现频率(概率)的计算:将记录成阳性或阴性结果转换成出现频率:①对阳性特征,则除以100即得。②对阴性特征,除以100的商被1减去即可。③说明:对“0”和“100”,因这2个数太超量,为了使结果不出现过小或过大,而用相似值0.01或0.99值代替。
(2)在每一个分类单位中,将所有测定项目的出现频率相乘,得出总出现频率。
(3)在每个分类菌群中的所有菌的总出现频率相加,除以一个分类单位的总出现频率,乘100,即得鉴定%(%id)
(4)在每个菌群中,再按%id值大小顺序重新排列。将未知菌单次总发生频率除以最典型反应模式单次总发生频率,得到模式频率T值,代表个体与总体的近似值。T值越接近1,个体与总体越接近,鉴定价值越大。按%id大小排序,将相邻两项的%id之比为R,代表着首选条目与次选条目的差距,差距越大,价值越大。如果%id≥80,参考T及R值可作出鉴定。

2.在编码检索本中检索数据谱得出的结果有以下几种形式(以API鉴定系统为例)。
(1)有此数码谱:①有一个或几个菌名条目及相应的鉴定值(%id和T值)。②对鉴定结果好坏的评价,最佳……等。③用小括号列出关键的生化结果及阳性百分率。④有时,鉴定结果不佳或有多条菌名条目,需进一步补充试验项目才能得出良好的鉴定结果。⑤指出某些注意要点,需用“推测性鉴定”,并将此菌送至参考实验室;需用“血清学鉴定”,作进一步的证实等。
(2)无此数码谱:可能有以下原因:①此生化谱太不典型。②不能接受,鉴定值低(%id<80.0)。③可疑。需进一步确认是否纯培养,重新鉴定,可与供应商技术服务部联系。

3. 结果解释
(1)如果排序第一的细菌%id≥80.0,则可将未知菌鉴定在此条目中,并按%id值的大小对鉴定的可信度作出评价。%id≥99.9和T≥0.75为最佳的鉴定;%id 99.0~98.9之间,T≥0.5为很好的鉴定;%id 90.0~98.9之间,T≥0.25为好的鉴定;%id 80.0~89.9之间为可接受的鉴定。
(2)如果第一条目的%id<80.0,则将前2个条目的%id加在一起,若仍不足80.0,则将前3个%id相加。若≥80.0,则有2种可能:①为同种细菌,可能是不同生物型。②为同一菌属的不同种。
如果相加的几个条目既不属于同一细菌种,又不属于同一细菌属,在评价中会指出“补充生化反应”的项目及阳性反应率,可通过这些生化反应将几种菌区分开来。若前3个条目的和<80.0,则为不可接受的结果。
(二)数码鉴定在临床上的应用
国内外已有许多种用于临床细菌鉴定的数码鉴定系统,为临床微生物学实验室对细菌的鉴定提供了简便、快速的方法。目前常见微生物鉴定系统见表6-4-3
表6-4-3 目前常见微生物鉴定系统

生产厂商 系统名称 可鉴定的微生物 孵育时间及条件
ANI 厌氧菌 4h;需氧
API20A 厌氧菌 24h;厌氧
API An-IDENT 厌氧菌 4h;需氧
API Staph(STAPH-Trac) 葡萄球菌、微球菌 24h
GPI 革兰阳性球菌和杆菌 2~15h
ID32 Staph 葡萄球菌 24h
API Coryne(Rapid CORYNE) 棒状杆菌及相关菌 24h
API 20Strep(Rapid STREP) 链球菌、肠球菌 4~24h
API 20E 肠杆菌科、非发酵菌 24~48h
EPS (Enteric Pathogen Screen) 爱德华菌属、沙门菌属、志贺菌属、耶尔森菌属 4~8h
GNI 肠杆菌科、非发酵菌 2~18h
GNI+ 肠杆菌科、非发酵菌 2~12h
UID/UID-3 尿液来源尿道致病菌 1~13h
YBC 酵母菌 24~48h
API 20C AUX 酵母菌 48~72h


推荐
热点排行
一周推荐
关闭