关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

AFM磁学测量

2018.7.31

磁学测量


磁性纳米结构和材料在高密度磁存储、自旋电子学等领域有着广泛的应用前景,高空间分辨的磁成像和磁测量技术将有利于推动磁性纳米结构和材料的研究。基于扫描探针及其相关技术,发展出一系列纳米磁性成像与测量的技术和方法,包括磁力显微术、磁交换力显微术、扫描霍尔显微术、扫描超导量子干涉器件显微术、扫描磁共振显微术以及自旋极化扫描隧道显微术等。


磁力显微术(magnetic force microscopy,MFM),是实现磁性材料表面微区磁结构测量的重要技术,但在测量中由于磁场势的矢量性以及样品和针尖的磁结构状态会相互影响,因此MFM测量结果的清晰解读是非常困难的。为解决这一问题,将磁场测量微器件,如超导量子干涉器件(SQUID)及霍尔型器件等,集成在微悬臂探针上, 即扫描SQUID 显微术和扫描霍尔显微术(scanning Hall probe microscopy,SHPM),可用于样品表面微区磁场分布的定量化图像分析,空间分辨率可达几十纳米,并可进行微区磁化性能曲线测量,实时磁现象的动态测量等。这几种磁探测技术获得的图像分辨率一般为几十纳米,可以用来研究铁磁样品的磁畴结构等。如果想进一步研究磁畴结构内部的原子自旋排列,就需要能够在原子尺度下实现畴结构和单个原子的磁成像,可通过自旋极化扫描隧道显微术(spin polarized-STM,SP-STM)、磁交换力显微术(magnetic exchange force microscopy,MExFM)、以及磁共振力显微术(magnetic resonance force microscopy,MRFM)等来实现。2013 年,基于qPlus 型原子力传感器的MExFM,利用强磁各向异性的金属SmCo 针尖,实现了反铁磁绝缘体NiO(001)表面镍原子的自旋有序结构成像,测量得到的针尖—样品原子间交换相互作用强度为~1 meV,衰减常数为~18 pm[3]。磁共振力显微术是具有三维空间分辨能力的磁共振技术与AFM的结合,基本原理如图1(a)所示,可在原子尺度上实现三维样品(如蛋白质等生物大分子)的空间成像,具有单自旋的探测精度[4],还可以作为量子比特的读出器件,用于量子计算、存储等量子工程学中,但通常需要比较苛刻的低温和真空环境等。


推荐
关闭