关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

EDI技术的开发与应用

2020.7.01

对于生产高纯水的工业公司来说有一个重要的消息,那就是不使用化学再生药剂而制得高纯度的水现在已成为了现实。最近开发的EDI技术所制取水质的纯度可以达到极限要求,而且还会带来其它一系列的益处。

 

    无需化学再生药剂的EDI技术


被水处理行业称为EDI的电去离子法并不是什么新名词,事实上,商品化的EDI在十多年前就已经出现了。尽管早期的EDI系统出力较低,而且运行的可靠性很差,但今天的EDI已经能够满足工业领域对水处理的广泛要求了。

目前的RO(反渗透)-EDI系统使水的净化方式正经历着变革,然而使工业部门广泛地接受EDI还有很长的一段路要走。


从四十多年以前的制药、造纸、石化及电力到今天的半导体产业,水一贯是工业部门的命脉,而正是这些部门导致了超纯水处理技术的革命。尽管工业用户所要求的基本特点如较少的化学药剂、较少的废水排放量、简单的操作及较低的运行费用等基本上是相同的,但原有的水处理技术已经发生了许多变化。

 

    水处理技术的主要发展


为满足工业部门对高纯水的需要,近年来在工业水处理方面对两项技术进行了重点开发,这些新技术中的每一项都使水处理系统产生了突破性的变化。


在二十世纪60至70年代,工业部门所要求的水质通过化学方式再生的离子交换技术即可得到满足。由于当时的应用面不大,因而对使用化学药剂所带来的长期影响较少有人关注。


在早期的水处理系统中,混床离子交换阶段作为后续处理过程以一个独立的单元置于阳、阴离子交换之后。随着对应用要求的提高,以化学方式再生的离子交换系统显然受到了限制,问题的焦点在于它们漏过的TOC含量较高。与新近的技术相比,在这些系统中使用了大量的化学再生药剂,并要求对化学废水进行连续地处理,而且其操作复杂、运行费用较高。


在二十世纪70年代至80年代,随着人们对减少化学药剂使用意识的增加,人们开始在工业水处理中寻求新的工艺方法,其结果导致了对反渗透技术的新的应用。反渗透在预脱盐系统中使用膜技术替代了阳/阴离子交换单元,但是这种新技术在初期的应用中并不顺利,RO对预处理的要求较高,而作为一个整体的水处理系统则趋向于简化。


由于电子工业对纯水水质(包括降低TOC的含量)的要求越来越高,促使水处理技术不断地向前发展,RO被视为解决的方案。随着预处理过程的提高、更高级的RO膜被开发出来,使RO在应用初期所遇到的问题逐渐地被克服了。


随着时间的推移,RO逐步为世人所接受,同时诸如逆流再生设计、满室床离子交换及专用树脂的开发等后续的离子交换技术也得到了相应的发展。由于这些新工艺的广泛应用,费用得到了降低,但RO/混床系统与目前的化学方式再生的离子交换系统相比,仍具有一定的经济性,对于前述的这些技术目前还有一定的需求。
RO/混床系统满足了工业部门对高纯水水质的多方面要求,它们可将不溶性杂质处理至十亿分之几,同时也降低了TOC的含量。无论如何,工业上仍需继续依赖混床技术作为除盐的最后阶段,对混床阶段化学药剂的使用及相关设施的要求意味着RO所带来的益处未能充分地体现出来,进一步降低化学药剂的使用促成了第二次技术革命。


通常称为EDI的电去离子法40多年前作为非化学工艺首先被开发应用于试验室工作,最近的开发EDI技术使彻底消除对化学再生药剂的依赖成为现实,而且它还可以带来一系列别的益处。

 

EDI的工作原理


典型的EDI系统涉及到这样一个处理工序:预处理-RO-EDI。EDI使用普通的离子交换树脂连续地从水中除去离子,但由于它是运用电流对树脂进行连续的再生,因而它完全不用进行定期的化学再生。


典型的EDI膜堆是由夹在两个电极之间的一定对数的单元组成(见图1 EDI的工作原理图)。在每个单元内有两类不同的室:待除盐的淡水室即D室,收集所除去杂质离子的浓水室即C室。D室中用混匀的阳、阴离子交换树脂填满,这些树脂位于两个膜之间:只允许阳离子透过的阳离子交换膜及只允许阴离子透过的阴离子交换膜。


树脂床利用加在室两端的直流电进行连续地再生,电压使进水中的水分子分解成H+及OH-,水中的这些离子受相应电极的吸引,穿过阳、阴离子交换树脂向所对应膜的方向迁移,当这些离子透过交换膜进入浓室后,H+和OH-结合成水。这种H+和OH-的产生及迁移正是树脂得以实现连续再生的机理。


当进水中的Na+及CI-等杂质离子吸咐到相应的离子交换树脂上时,这些杂质离子就会发生象普通混床内一样的离子交换反应,并相应地置换出H+及OH-。一旦在离子交换树脂内的杂质离子也加入到H+及OH-向交换膜方向的迁移,这些离子将连续地穿过树脂直至透过交换膜而进入浓水室。这些杂质离子由于相邻隔室交换膜的阻挡作用而不能向对应电极的方向进一步地迁移,因此杂质离子得以集中到浓水室中,然后可将这种含有杂质离子的浓水排出膜堆。


推荐
热点排行
一周推荐
关闭