关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

HPLC基础知识(五)

2020.3.29

4.与检测器有关的故障及其排除
1)流动池内有气泡
   如果有气泡连续不断地通过流动池,将使噪音增大,如果气泡较大,则会在基线上出现许多线状“峰”,这是由于系统内有气泡,需要对流动相进行充分的除气,检查整个色谱系统是否漏气,再加大流量驱除系统内的气泡。如果气泡停留在流动池内,也可能使噪音增大,可采用突然增大流量的办法除去气泡(最好不连接色谱柱);或者启动输液泵的同时,用手指紧压流动池出口,使池内增压,然后放开。可反复操作数次,但要注意不使压力增加太多,以免流动池破裂。
2)流动池被污染
    无论参比池或样品池被污染,都可能产生噪音或基线漂移。可以使用适当溶剂清洗检测池,要注意溶剂的互溶性;如果污染严重,就需要依次采用1mol/L硝酸、水和新鲜溶剂冲洗,或者取出池体进行清洗、更换窗口。
3)光源灯出现故障
    紫外或荧光检测器的光源灯使用到极限或者不能正常工作时,可能产生严重噪音,基线漂移,出现平头峰等异常峰,甚至使基线不有回零。这时需要更换光源灯。
4)倒峰
    倒峰的出现可能是检测器的极性接反了,改正后即可变成正峰。用示差折光检测器时,如果组分的折光指数低于流动相的折光指数,也会出现倒峰,这就需要选择合适的流动相。如果流动相中含有紫外吸收的杂质,使用紫外检测器时,无吸收的组分就会产生倒峰,因此必须用高纯度的溶剂作流动相。在死时间附近的尖锐峰往往是由于进样时的压力变化,或者由于样品溶剂与流动相不同所引起的。
五、数据处理和计算机控制系统
    早期的HPLC仪器是用记录仪记录检测信号,再手工测量计算。其后,使用积分仪计算并打印出峰高、峰面积和保留时间等参数。80年代后,计算机技术的广泛应用使HPLC操作更加快速、简便、准确、精密和自动化,现在已可在互联网上远程处理数据。计算机的用途包括三个方面:①采集、处理和分析数据;②控制仪器;③色谱系统优化和专家系统。
六、恒温装置
    在HPLC仪中色谱柱及某些检测器都要求能准确地控制工作环境温度,柱子的恒温精度要求在±0.1~0.5℃之间,检测器的恒温要求则更高。
    温度对溶剂的溶解能力、色谱柱的性能、流动相的粘度都有影响。一般来说,温度升高,可提高溶质在流动相中的溶解度,从而降低其分配系数K,但对分离选择性影响不大;还可使流动相的粘度降低,从而改善传质过程并降低柱压。但温度太高易使流动相产生气泡。
    色谱柱的不同工作温度对保留时间、相对保留时间都有影响。在凝胶色谱中使用软填料时温度会引起填料结构的变化,对分离有影响;但如使用硬质填料则影响不大。
    总的说来,在液固吸附色谱法和化学键合相色谱法中,温度对分离的影响并不显著,通常实验在室温下进行操作。在液固色谱中有时将极性物质(如缓冲剂)加入流动相中以调节其分配系数,这时温度对保留值的影响很大。
    不同的检测器对温度的敏感度不一样。紫外检测器一般在温度波动超过±0.5℃时,就会造成基线漂移起伏。示差折光检测器的灵敏度和最小检出量常取决于温度控制精度,因此需控制在±0.001℃左右,微吸附热检测器也要求在±0.001℃以内。
IV.固定相和流动相
    在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。本章着重讨论填料基质、化学键合固定相和流动相的性质及其选择。
一、基质(担体)
    HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。无机物基质主要是硅胶和氧化铝。无机物基质刚性大,在溶剂中不容易膨胀。有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。
1.基质的种类
1)硅胶
    硅胶是HPLC填料中最普遍的基质。除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。硅胶基质填料适用于广泛的极性和非极性溶剂。缺点是在碱性水溶性流动相中不稳定。通常,硅胶基质的填料推荐的常规分析pH范围为2~8。
硅胶的主要性能参数有:
①平均粒度及其分布。
②平均孔径及其分布。与比表面积成反比。
③比表面积。在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。
④含碳量及表面覆盖度(率)。在反相色谱法中,含碳量越大,溶质的k值越大。
⑤含水量及表面活性。在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。
⑥端基封尾。在反相色谱法中,主要影响碱性化合物的峰形。
⑦几何形状。硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。
⑧硅胶纯度。对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。
2)氧化铝
    具有与硅胶相同的良好物理性质,也能耐较大的pH范围。它也是刚性的,不会在溶剂中收缩或膨胀。但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。
3)聚合物
    以高交联度的苯乙烯-二乙烯苯或聚甲基丙烯酸酯为基质的填料是用于普通压力下的HPLC,它们的压力限度比无机填料低。苯乙烯-二乙烯苯基质疏水性强。使用任何流动相,在整个pH范围内稳定,可以用NaOH或强碱来清洗色谱柱。甲基丙烯酸酯基质本质上比苯乙烯-二乙烯苯疏水性更强,但它可以通过适当的功能基修饰变成亲水性的。这种基质不如苯乙烯-二乙烯苯那样耐酸碱,但也可以承受在pH13下反复冲洗。
    所有聚合物基质在流动相发生变化时都会出现膨胀或收缩。用于HPLC的高交联度聚合物填料,其膨胀和收缩要有限制。溶剂或小分子容易渗入聚合物基质中,因为小分子在聚合物基质中的传质比在陶瓷性基质中慢,所以造成小分子在这种基质中柱效低。对于大分子像蛋白质或合成的高聚物,聚合物基质的效能比得上陶瓷性基质。因此,聚合物基质广泛用于分离大分子物质。
2.基质的选择
    硅胶基质的填料被用于大部分的HPLC分析,尤其是小分子量的被分析物,聚合物填料用于大分子量的被分析物质,主要用来制成分子排阻和离子交换柱。
         硅胶         氧化铝      苯乙烯-二乙烯苯      甲基丙烯酸酯
         耐有机溶剂     +++         +++      ++             ++
         适用pH范围     +           ++      +++             ++
         抗膨胀/收缩   +++         +++       +               +
         耐压          +++         +++      ++              +
         表面化学性质   +++          +       ++            +++
         效能          +++          ++       +              +
         注:+++好 ++一般 +差
二、化学键合固定相
    将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。
1.键合相的性质
    目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应,形成Si-O-Si-C键形的单分子膜而制得。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应(不可能将较大的有机官能团键合到全部硅醇基上)和其它因素的影响,使得大约有40~50%的硅醇基未反应。
    残余的硅醇基对键合相的性能有很大影响,特别是对非极性键合相,它可以减小键合相表面的疏水性,对极性溶质(特别是碱性化合物)产生次级化学吸附,从而使保留机制复杂化(使溶质在两相间的平衡速度减慢,降低了键合相填料的稳定性。结果使碱性组分的峰形拖尾)。为尽量减少残余硅醇基,一般在键合反应后,要用三甲基氯硅烷(TMCS)等进行钝化处理,称封端(或称封尾、封顶,end-capping),以提高键合相的稳定性。另一方面,也有些ODS填料是不封尾的,以使其与水系流动相有更好的“湿润”性能。
    由于不同生产厂家所用的硅胶、硅烷化试剂和反应条件不同,因此具有相同键合基团的键合相,其表面有机官能团的键合量往往差别很大,使其产品性能有很大的不同。键合相的键合量常用含碳量(C%)来表示,也可以用覆盖度来表示。所谓覆盖度是指参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。
    pH值对以硅胶为基质的键合相的稳定性有很大的影响,一般来说,硅胶键合相应在pH=2~8的介质中使用。
2.键合相的种类
    化学键合相按键合官能团的极性分为极性和非极性键合相两种。
    常用的极性键合相主要有氰基(-CN)、氨基(-NH2)和二醇基(DIOL)键合相。极性键合相常用作正相色谱,混合物在极性键合相上的分离主要是基于极性键合基团与溶质分子间的氢键作用,极性强的组分保留值较大。极性键合相有时也可作反相色谱的固定相。
    常用的非极性键合相主要有各种烷基(C1~C18)和苯基、苯甲基等,以C18应用最广。非极性键合相的烷基链长对样品容量、溶质的保留值和分离选择性都有影响,一般来说,样品容量随烷基链长增加而增大,且长链烷基可使溶质的保留值增大,并常常可改善分离的选择性;但短链烷基键合相具有较高的覆盖度,分离极性化合物时可得到对称性较好的色谱峰。苯基键合相与短链烷基键合相的性质相似。
    另外C18柱稳定性较高,这是由于长的烷基链保护了硅胶基质的缘故,但C18基团空间体积较大,使有效孔径变小,分离大分子化合物时柱效较低。
3.固定相的选择
    分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发生反应生成Schiff 碱。二醇基键合相适用于分离有机酸、甾体和蛋白质。
    分离非极性和极性较弱的化合物可选择非极性键合相。利用特殊的反相色谱技术,例如反相离子抑制技术和反相离子对色谱法等,非极性键合相也可用于分离离子型或可离子化的化合物。ODS(octadecyl silane)是应用最为广泛的非极性键合相,它对各种类型的化合物都有很强的适应能力。短链烷基键合相能
    用于极性化合物的分离,而苯基键合相适用于分离芳香化合物。
    另外,美国药典对色谱法规定较严,它规定了柱的长度,填料的种类和粒度,填料分类也较详细,这样使色谱图易于重现;而中国药典仅规定填料种类,未规定柱的长度和粒度,这使检验人员难于重现实验,在某些情况下还浪费时间和试剂。

推荐
关闭