关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

原子力显微镜的在生物领域的应用

2020.9.08

 1. 形态结构

  作为新兴的形态结构成像技术,AFM实现了对接近自然生理条件下生物样品的观察。这主要由于它具备以下几个特点:

  1).与扫描电镜和透射电镜这些高分辨的观测技术相比,样品制备过程简便,可以不需染色、包埋、电镀、电子束的照射等处理过程;

  2).除对大气中干燥固定后样品的观察外,还能对液体中样品成像;

  3).可以根据观察者的要求,调节样品所处的温度、湿度、大气、真空等观察条件。目前,AFM已广泛地应用于细胞及蛋白、多糖、核酸等生物大分子结构的研究中。对一个细胞而言,AFM不但能够提供长度、宽度、高度等形态方面的信息,还可以满足人们对膜上的离子通道、丝状伪足、细胞间连接等细微结构的研究,甚至还可清楚地观察到膜身的骨架结构。后者对细胞表面与表面下结构相互作用的进一步研究非常有利。

  2. 力学特性

  由于利用AFM可对扫描各点高度及作用力的测量,这就意味着我们不仅可以获取生物样品的表面形态和三维结构,还可以得到其表面硬度、粘弹性、摩擦力等力学特性的表面图谱

  3. 分子间力

  将很高的空间分辨率与敏感且准确的力学感应性相结合,是AFM的一个极为显著的特点。通过将探针连接在弹性系数很小的悬臂上,AFM对力的测量敏感性可达到pn水平。到目前为止,AFM已经广泛地运用于测量溶液中生物分子间相互作用如与生物反应有关的水合力的研究。利用这些研究结果还有助于对生物分子结构和机械性能进行分析。例如,蛋白质依靠多种非共价作用而保持其结构稳定,通过机械或化学的方法将蛋白伸展后,可以利用AFM直接测量稳定蛋白结构的作用力,并进一步探究这些力对蛋白结构的影响。近几年AFM对肌蛋白titin的去折叠研究取得的显著成果即有力地说明了这一点。另外,AFM还能够测量单个分子间微弱的非共价力。例如测量受体-配体的去结合力,若受体固定在基底表面的话,则将与之对应的配体固定于探针表面,使探针功能化。随探针-样品的距离逐渐缩小,悬臂受探体-样品间吸引或排斥力的作用向接近或远离样品的方向偏折,悬臂偏折的zui大幅度反映分离紧密结合两分子所需的力。在测量中,有可能会受到探针与表面的非特异性相互作用的干扰。因此,有必要认真地选择对照实验包括使用未功能化探针;或基底所处的溶液中利用游离的配体封闭受体;调节溶液的离子强度或pH,降低静电力的干预。除此之外,探针还有可能受溶液粘性牵拉力作用,使撤离速率减慢至记录数据低于实际的作用力。

  4. 显微操作

  通过在纳米级水平调控探针的位置和施加力,AFM可以实现对生物分子进行物理操作如切割生物结构,转移分子至特定位置。在一定的范围调整施加力,AFM在成像的同时即可对样品进行操作。施加力的范围主要由悬臂的力学常数和探针粗细决定。与标准显维切割技术相比,AFM对目标区域切割、提取等操作具有更准确的特点。


推荐
关闭