关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

液相色谱手性识别机理研究进展(二)

2020.3.23

2 、手性识别模型

目前,关于手性识别的一般机理众说纷纭。在手性色谱学这一领域,早在1952年,Dalgliesh[12]采用纸层析研究氨基酸对映体的分离时就提出了色谱直接拆分“三点作用”分离理论。后来,Lochmüler和Dobashi提出“两点作用”模型;Lochmüler和Wainer提出“单点作用”机理,Lochmüler进一步提出某些系统存在“环境手性”而没有专一的作用点。对映体的拆分过程可以是熵控制的,手性识别源于形状选择性的识别模型(图4)。也就是说,在没有结合点(如氢键、色散力、偶极作用、p-p相互作用等)的手性环境里,熵控制下,对映体在色谱过程中是可以被拆分的。事实上,由于熵变化值较小,从而导致a 值不够显著,因此,能够通过增加作用点来提高手性选择性值,识别模型如图5所示,对映体的拆分源于分子形状和相互作用力的共同贡献。

近些年来,Pirkle等[2]在深入研究手性固定相以及手性色谱立体识别机理的过程中,发展了Dalgliesh观点,再一次阐述了“三点作用”分离理论:手性识别要求手性固定相和对映异构体之间至少有三个同时存在的作用力,这些作用力中至少有一个依赖于立体化学。也就是说,用其中的另一对映异构体(不作任何构象改变)来替代后,至少有一个作用力不复存在或明显改变其性质。用如图6所示的手性识别模型表达:在手性固定相上有三个作用点A、B、C,与之作用的对映异构体也同样有三个作用点A’、B’、C’。对映体I与CSP形成A-A’、B-B’、C-C’三个作用力,对映体II则不存在C-C’作用力。如果C-C’作用力使形成的非对映分子络合物稳定化,那么,色谱分离过程中对映体I比II滞后;反之,对映体I由于C-C’的排斥作用先流出色谱柱。如果C-C’作用力很小,则对映体I、II不能被色谱拆分。

1992年,Taylor等[13]对“三点作用”原理评述认为:对映体与CSP的三个作用力中,至少有一个力具有立体选择性即依赖于对映异构体和CSP的立体化学,而另外两个作用力必须是两种不同类型的作用力,如氢键、偶极作用、 p-p作用等,否则如果存在两个相同的作用力,则可能产生不利的作用,使得CSP的手性识别能力降低或消失,例如当A-A’和B-B’作用力相同时,就可能使CSP失去手性分离能力(图7)。

事实上,手性色谱分离中有的对映体确实是靠氢键这一种类型的力在CSP上识别的[13,14],这种手性识别可以认为是对映异构体和手性固定相形成非对映异构络合物的分子构象不同,使得其平衡常数K1、K2不同。另一方面,“三点作用”原理要求CSP分子和待分离对映异构体的手性中心附近都要有一定的刚性,柔韧性过强将会使手性识别能力丧失,如图8所示。

“三点作用”原理与Ogston [15]为解释酶催化反应的立体专一性而提出的“三点键合”原理不同,二者的区别在于:“三点作用”原理没有要求三点都是吸引力。在许多情况下,手性识别可以靠空间位阻的排斥力和两个吸引力来实现(图9),对映体II由于其大基团的空间位阻,使得其另外的氢键和p -p 作用明显减弱。这种作用已被NMR分子间的核极化效应[16]和分子机理计算[3,17]所证实。表现在色谱过程中,对映体II的保留时间会低于对映体I。

分子间作用力的单点性和多点性的特征由Pirkle等给出了明晰的描述[2]:两个凸圆面相互接触时,接触处形成一个理想的点,于是将凸圆形电子轨道的相互作用描述成单点性的,如氢键、尾-尾偶极相互作用是单点性质作用力。通过线或面的基团的相互作用,如偶极堆积,p-p作用则为多点性质的。基于这些思想,可以将“三点作用”原理扩展:并不强调手性识别仅仅源于两个手性四面体的角顶点的相互作用,也可以沿着AB和A’B’的偶极基团,通过多点性质的偶极堆积作用同样达到两个点作用的效果;芳环间的p-p作用亦是如此,手性识别模型如图10所示。

色谱手性识别是个复杂的过程,模型的提出是将复杂过程简单明晰化。Pirkle在运用和发展“三点作用”原理时,强调形成非对映异构分子络合物的CSP和对映体二者分子构象不发生改变,在模式上易于理解,但事实上并不完全如同所描述的那样。色谱过程是时间的函数,分子不同的排列取向、不同的构象体、以及不同的相互作用(包括手性作用和非手性作用)都将影响到手性识别过程,大多数情况下考虑的是低能量的优势构象的贡献;再者手性识别也可能是多种机理的竞争。

近年来,手性色谱学领域,机理的研究是一种趋势[18]。人们试图从理性的角度将手性色谱学导向深入。目前,用于手性识别机理研究的方法有三种[19]:

(1) 色谱学研究,这是评估一种CSP特性的最通用的实验方法,通过拆分现象推测色谱手性分离过程的最基本信息。

(2) 光谱学研究,包括核磁共振、X射线衍射、荧光分析和红外光谱等在CSP的性质和识别机理研究研究中的应用。这是最直接的研究手性识别机理的方法,然而在色谱手性分离系统中影响因素很多,此方法要求的条件非常严格。

(3) 计算机辅助分子模型和理论计算方法,这是一种基于计算机技术的方法。借助于计算机辅助技术,运用分子模型和理论计算方法设计新的手性固定相、开发已有的手性固定相的应用和研究手性识别机理已经成为近年来色谱手性分离的新领域。

参考文献
[1] Topiol S, Sabio M, Moroz J et al. J. Am. Chem. Soc., 1988, 110:8367-8376.
[2] Pirkle W H, Pochapsky T C. Chem. Rev., 1989, 89(2):347-362.
[3] Lipkowitz K B, Demeter D A, Zegarra R et al. J. Am. Chem. Soc., 1988, 110:3446-3452.
[4] Beitler U, Feibush B. J. Chromatogr., 1976, 123:149-166.
[5] Koppenhoefer B, Bayer E. Chromagraphia, 1984, 19:123-130.
[6] 陈慧, 吕宪禹, 高如瑜 等.高等学校化学学报, 2000, 21(2):233-236.
[7] Pirkle W H. J. Chromatogr., 1991, 558:1-6.
[8] Pirkle W H, Pochapsky T C. J.Chromatogr., 1986, 369:175-177.
[9] Pirkle W H, Pochapsky T C. Chromatographia, 1988, 25(7):652-654.
[10] Boehm R E, Martire D E, A  rmstrongDE.Anal.Chem.,1988,60:522-528.
[11] Berthod A, Chang S C, Armstrong D W. Anal. Chem., 1992, 64:395-404.
[12] Dalgliesh C E. J. Chem. Soc., 1952, 47:3940-3942.
[13] Taylor D R, Maher K. J. Chromatogr. Sci., 1992, 30:67-85.
[14] Feibush B, Figueroa A, Charles R et al. J. Am. Chem. Soc., 1986, 108:3310-3318.
[15] Ogston A G. Nature, 1948, 162:963.
[16] Pirkle W H, Pochapsky T C. J. Am. Chem. Soc., 1987, 109:5975-5982.
[17] Lipkowitz K B. J. Chromatogr. A, 1994, 666:493-503.
[18] Lipkowitz K B. J. Chromatogr. A, 1995, 694:15-37.
[19] Lü X J, Rogers L B, de Haseth J A. Anal. Chem., 1991, 63:2939-2946


推荐
关闭