关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

如何扩展FPGA的工作温度范围?(二)

2020.10.26

  温度变化

  电子器件通常会指定最大结温。但令人遗憾的是系统设计人员关心的是环境温度。环境温度和结温的差异将取决于封装传递热量的能力以及冷却系统将该热量散出系统机箱的能力。

  热阻是一个热属性,也是衡量给定材料阻碍热量流动的幅度的指标。因为热阻的存在,热流通过的组件的内外侧温度会有差异,正如电流的存在造成电阻两端的电压不同。对机身内外侧温差 20℃ 的情况,最大结温为 125℃ 的器件能够在高达 105℃ 的环境下工作。热阻的表达方式是℃/W,即耗散 1W 热量时内侧和外侧的温差即为热阻。热阻是一种热属性,用来衡量给定材料阻碍热量流动的幅度,这一关系以公式表示即为图 3 所示。

如何扩展FPGA的工作温度范围?

  耗散的热能取决于器件、电路、时钟频率和运行在器件上的代码。器件内部(结温)和所在环境(环境温度)之间的温差因此取决于器件、代码和工作原理图。

  常用冷却解决方案

  在大多数设计中需要冷却的地方,设计人员使用无源冷却(散热器通过增大空气接触表面,帮助将热量散发到空气中)或使用有源冷却。有源冷却解决方案一般通过强制气流,帮助更换用于吸收器件上热量的冷空气。空气吸收热量的能力取决于空气与器件之间的温差以及空气的压力。其他解决方案包括液体冷却,用液体(一般是水)取代空气,可实现更高的散热效率。空气或流体吸热的能力由图 4 给出的热吸收等式决定。设计人员常常使用的最终方法是热电冷却,即借助珀尔帖效应 (Peltier effect)(通过在连接到半导体样品的两个电极间施加电压来形成温差)来冷却冷却板的一侧,同时加热另一侧。虽然这一现象有助于把热量从待冷却的器件上带走,但珀尔帖冷却有存在另一大不利因素:它要求大量的外部功耗。

如何扩展FPGA的工作温度范围?

  在我们的案例中,气流不是解决方案,因为机箱中的空气数量有限,空气温度会迅速达到均衡。水冷也不可能,因为水源和工具之间距离很长。因此对我们而言,珀尔帖效应是唯一的冷却解决方案。因为环境温度是固定的(我们不能像图 3 的公式一样为大量液体加热),热电效应冷却器实际上会降低电子产品的温度。令人遗憾的是,由于冷却装置需要大电流,而且需要用超长的导体将表面与工具相连,实际上只有有限的电流可用于冷却,而且只能实现较小的温差。

  此外,由于我们的装置是一个摄像头,画质会随温度升高急剧下降。因此我们必须优化我们的冷却策略,尽量为图像传感器降低温度,而不是 FPGA、存储器、LED 驱动器或电源电路降低温度。

  由于珀尔帖效应只能选择用于冷却图像传感器,用于冷却 FPGA 几乎没有可能,所以我们唯一的选择是降低FPGA 内的峰值温度。


推荐
关闭