关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

锂电池的原理及生产工艺流程

2022.11.04

一、锂离子电池原理
1.0 正极构造
LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极
2.0 负极构造
石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极
电芯的构造
电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。
根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。
3.0工作原理
锂电池内部成螺旋型结构,正极与负极之间由一层具有许多细微小孔的薄膜纸隔开。锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。锂离子电池的正极采用钴酸锂,正极集流体是铝箔;负极采用碳,负极集流体是铜箔,锂离子电池的电解液是溶解了LiPF6的有机体。
锂离子电池的正极材料是氧化钴锂,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生茶鞥的锂离子经过电解液运动到负极。而作为负极的碳呈现层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样道理,党对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,有运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。
锂离子电池盖帽上有防爆孔,在内部压力过大的情况下,防爆孔会自动打开泄压,以防止出现爆炸的现象。
锂离子电池的性能
1、高能量密度
  与同等容量的NI/CD或NI/MH电池相比,锂离子电池的重量轻,其体积比能量是这两类电池的1.5~2倍。
2、高电压
  锂离子电池使用高电负性的含元素锂电极,使其端电压高达3.7V,这一电压是NI/CD或NI/MH电池电压的3倍。
3、无污染,环保型
4、循环寿命长
  寿命超过500次
5、高负载能力
  锂离子电池可以大电流连续放电,从而使这种电池可被应用于摄象机、手提电脑等大功率用电器上。
6、优良的安全性
  由于使用优良的负极材料,克服了电池充电过程中锂枝晶的生长问题,使得锂离子电池的安全性大大提高。同时采用特殊的可恢复配件,保证了电池在使用过程中的安全性。
※在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制:
1.负极材料的处理
1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。
2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。
2.制浆工艺的控制
1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。
2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。
3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。
3.采用先进的极片制造设备
1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。
2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。
3)辊压机的辊轴锥度和径向跳动应不大于4μm,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。
4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。
4.先进的封口技术
目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素:
1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。
2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。
3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。
3.1 充电过程
如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上发生的反应为
LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)
负极上发生的反应为
6C+XLi++Xe=====LixC6
3.2 电池放电过程
放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
二、 工艺流程
锂离子电池的工艺技术非常严格、复杂,这里只能简单介绍一下其中的几个主要工序。
1、制浆:用专门的溶剂和粘结剂分别与粉末状的正负极活性物质混合,经高速搅拌均匀后,制成浆状的正负极物质。
2涂膜:将制成的浆料均匀地涂覆在金属箔的表面,烘干,分别制成正负极极片。
3、装配:按正极片—隔膜—负极片—隔膜自上而下的顺序放好,经卷绕支持呢个电池极芯,再经注入电解液、封口等工艺过程,即完成电池的装配过程,制成成品电池。
4、化成:用专用的电池充放电设备对成品电池进行充放电测试,对每一只锂电池都进行检测,筛选出合格的成品电池,待出厂。

推荐
关闭