关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

HFSS算法及应用场景介绍(二)

2020.9.28

IE算法是三维矩量法积分方程技术,支持三角形网格剖分。IE算法不需要像FEM算法一样定义辐射边界条件,在HFSS中主要用于高效求解电大尺寸、开放结构问题。与HFSS FEM算法一样,支持自适应网格技术,也可以高精度、高效率解决客户问题,同时支持将FEM的场源链接到IE中进行求解。HFSS-IE算法对金属结构具有很高的适应性,其主要应用领域天线设计、天线布局、RCS、EMI/EMC仿真等方向。

20170602032135452.jpg

图5、HFSS-IE天线布局仿真

高频近似算法-PO算法

FEM算法和IE算法是精确的全波算法,在超大电尺寸问题上,使用精确全波算法会造成效率的降低。针对超大电尺寸问题,ANSYS推出PO(物理光学法)算法,PO 算法属于高频算法,非常适合求解此类问题,在适合其求解的问题中,具有非常好的效率优势。

PO算法主要原理为射线照射区域产生感应电流,而且在阴影区域设置为零电流,不考虑射线追迹或多次反射,以入射波作为激励源,将平面波或链接FEM(IE)的场数据作为馈源。但由于不考虑射线的多次反射和绕射等现象,一般针对物理尺寸超大,结构均匀的物体电磁场计算,在满足精度的要求,相比全波算法效率明显提高。比如大平台上的天线布局,大型反射面天线等等。

20170602032147989.jpg

图6、HFSS-PO天线布局仿真

高频近似算法-SBR+算法

PO算法可以解决超大电尺寸问题的计算,但由于未考虑到多次反射等物理物体,主要用于结构均匀物理的电磁场计算。针对复杂结构且超大电尺寸问题,ANSYS通过收购Delcross公司(Savant软件)引入了SBR+算法,SBR+是在SBR算法(天线发射出射线,在表面“绘制”PO电流)的基础上考虑了爬行波射线(沿着表面追迹射线)、物理绕射理论PTD(修正边缘处的PO电流)、一致性绕射理论UTD(沿着边缘发射衍射射线,绘制阴影区域的电流),因此SBR+算法是高频射线方法,具有非常高效的速度,同时具有非常好的精度,在大型平台的天线布局中效果非常好。

20170602032202766.jpg

图7、SBR与SBR+算法对比

SBR+支持从FEM、IE中导入远场辐射方向图或者电流源,也支持导入相应的测试数据,SBR+算法主要用于天线安装分析,支持多核、GPU等并行求解方式并且大多数任务可在低于8 GB内存下完成。

20170602032214398.jpg

图8、FEM算法与SBR+算法仿真对比


推荐
关闭