关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

HFSS算法及应用场景介绍(四)

2020.9.28

在HFSS中,使用eigenmode算法可计算三维结构谐振模式,并可呈现图形化空间的谐振电压波动,分析结构的固有谐振特性。依据谐振分析的结果,指导机箱内设备布局和PCB层叠布局,改善电磁兼容特性。

20170602032315469.jpg

图13、Eigenmode算法应用场景

总结

HFSS里面有各种不同的算法,有全波算法、近似算法以及时域算法,工程师可以格局需要选择不同算法(最高的精度和最高的效率)。首先针对频域算法,使用范围见图14,通常FEM算法和IE算法非常适合于中小尺寸问题,对大型问题,FEM/IE运行时间/内存需求非常巨大;PO方法适合解决超大电尺寸问题,但对问题复杂度有限制,通常通常不能提供客户所期望的精度,但对于均匀物体是一个很好的选择;SBR+算法适合解决超大电尺寸问题,对复杂结构也能够提供很好的精度和速度;针对既有电小尺寸复杂结构计算问题,又有电大尺寸布局计算问题,混合算法是一个很好的选择。Transient算法适合解决与时间相关的电磁场问题,如ESD、TDR等;Eigenmode算法专门针对谐振仿真。

20170602032327275.jpg

图14、HFSS 频域算法选择


推荐
关闭