关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

毛细管流变仪的应用分析

2020.1.18

1.工作曲线

毛细管流变仪的工作原理是物料在温度、压力等因素的作用下,由粒状(或粉状)变成熔体的塑化过程,测试物料由玻璃态向粘流态转变的动态流变现象。

在实验过程中,先设定好毛细管流变仪的操作参数,按照测试条件称取适量物料,待温度达到设定条件后,安装合适的口模、压力传感器,待温度稳定之后,加入物料开始测试,通过实验可获得物料在某一温度下,粘度和表观切应力随剪切速率的变化曲线。同时,计算机屏幕上会动态显示物料的温度、表观剪切速率、表观切应力和表观粘度动态流变曲线。

2.表观粘度与剪切速率的关系

毛细管流变仪测定在某一特定温度下的粘度值,若表观粘度随剪切速率的变化不变,则被测定为牛顿流体;若粘度随剪切速率的变化而变化,说明这种流体是一种典型的非牛顿流体。一般情况下,在温度和压力一定的前提下,大多数材料熔体的粘度是随着剪切速率的增加而下降的,但是不同的材料对剪切速率(切应力)的敏感程度是不一样,但在剪切速率很低和很高的情况下,表观粘度几乎不随剪切速率变化而变化。

3.表观粘度与温度之间的关系

表观粘度是剪切速率或温度的函数。所以,只有剪切速率恒定时,研究温度对粘度的影响才有实际意义。一般来说,温度升高,必然使得分子间的运动加快,从而使得分子链之间的缠绕降低,分子之间的距离增大,从而导致粘度降低,而温度太低,熔体粘度大,流动困难,成型性差,并且弹性大,也会影响制品的稳定性。

4.表观粘度与粘流活化能

在实验温度范围内,粘流活化能随着剪切速率的增加而下降。这是因为外部剪切应力破坏了大分子之间缠结作用,使得链段活动范围变大,分子间距离增大,分子间的作用力削弱,致使分子链内旋转位垒较低,分子克服周围分子的作用发生迁移所需的能量较少,表现为粘流活化能小。

结合温度对于粘度的影响可以发现,在材料的正常加工范围内,提高剪切速率对粘度的影响和提高温度对于粘度的影响效果相似,但是从工艺的角度出发,单纯通过增加温度或提高剪切速率来提高材料的流动性能是不恰当的。因为过高的剪切速率不仅不能明显地改善流体的流动性,还可能会造成过多的功率损耗和过大的设备磨损,还会引起溢料和增加制品内应力等弊病,而温度过高,却会出现制品变形等缺陷,导致制品性能下降,影响使用。


推荐
热点排行
一周推荐
关闭