关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

高分三号SAR影像在国家海域使用动态监测中的应用(三)

2020.10.06

5.2 养殖浮筏信息提取

近些年,极化SAR图像的识别分类得到了广泛地研究,主要可以分为非监督和有监督两大类方法[27]。非监督方法仅仅根据遥感数据自身特性,无需人工辅助实现最终聚类,更适合于大范围目标识别[28,29]。有监督分类方法不需要任何假设条件,针对精细化分类,可以获得较高的精度[30]

5.2.1 非监督浮筏养殖监测

非监督算法对遥感图像聚类多引入空间域特征分布的方法,假设邻近区域属于同一类的概率较高,可解决孤岛效应和噪声干扰[31]。Wu等[32]采用Wishart 分布描述数据的协方差矩阵,实现基于区域的全极化SAR图像聚类。Yu等[33]采用带有边界惩罚项的区域增长方法进行SAR图像分割。上述两种方法属于空间域的图像分类方法。范剑超等[34]利用部分先验知识,提出单点逼近型初始聚类中心选择方法,得到不同属性的权重,解决同谱异物的问题,进而提出两阶段模糊聚类[35],提高SAR图像处理效率。相对陆地SAR图像,海洋SAR遥感图像因为存在海面大量不规则波浪等不同海况,单一特征严重受到相干斑噪声的影响,因此,需要考虑引入更多图像特征用于目标识别。纹理特征[36]、灰度共生矩阵[37]、Gabor变换特征和小波变换特征[38]广泛应用于SAR图像目标识别的特征提取过程中,可以获得较好的尺度和方向性的后向散射特征。Cunha等[39]提出一种非下采样轮廓波变换(NonSubsampled Contourlet Transform, NSCT)具有平移不变性的特点,能够很好地提取图像的边缘轮廓信息。焦李成等[40]根据SAR数据的上下文空间统计信息进行非监督分层迭代聚类,将特征域和空间域方法结合,获得了较好的效果。徐新等[41]对SAR图像进行过分割,再进行图像区域级和像素级的特征提取,得到用于表示图像的特征向量,再采用隐马尔科夫模型聚类。如上所述,多源特征集成提高SAR图像目标提取精度已经成为目前研究的热点,然而多集中于特征选择阶段或同类型特征合成,如何将不同类型的特征有效融入统一的框架下进行学习却鲜有报道。此外,传统聚类方法仅对球状分布的目标样本数据具有较好的聚类效果,然而在实际SAR图像处理过程中通常无法提前获知浮筏养殖分布类型。近些年,Chen等[42]在此基础上提出多核框架,将不同统计分布的数据在一个分类器中进行计算,取得较好的结果。Huang等[43]将多核函数与经典带有空间约束或目标函数带有惩罚项的核方法进行比较,发现经典聚类方式是多核框架的一种特殊形式。

选用GF-3全极化模式数据,选取5个研究区域,将L1A级产品转换为L2级,进行图像水平镜像,几何校正和图像滤波等相应预处理。并根据浮筏分布情况建立数据切片,GF-3影像和数据切片情况如图12所示。针对区域1和区域2进行无监督模糊聚类,将单极化特征、Yamaguchi极化特征和H/A/Alpha极化特征进行聚类分析,结果分别如图13和图14所示,聚类结果整体精度如表3所示,Yamaguchi极化特征相对单极化数据可以获得更好的聚类结果,而H/A/Alpha极化特征结果较差,因此获得更适合海水养殖目标提取极化特征十分重要。

R17080-12.jpg图 12 GF-3遥感影像数据切片情况Fig.12 Imagery of GF-3 slices
R17080-13.jpg图 13 GF-3数据切片1结果图Fig.13 Result based on GF-3 data slice 1
R17080-14.jpg图 14 GF-3数据切片2结果图Fig.14 Result based on GF-3 data slice 2
table-icon.gif表 3 精度评价结果Tab.3 The results of precision assessment

5.2.2 有监督深度学习网络浮筏养殖监测

深度学习在人工智能研究中表现出优异的效果,其具有在大规模数据上有效的特征提取与表达能力,在遥感图像分类识别任务中有很大的潜力。深度学习是一种特征学习方法,通过学习输入数据本身的结构来初始化网络参数,从而解决反向传播神经网络无法加深的问题,并获得更高层次的、更加抽象的数据表达[4446]。对于遥感分类识别任务,高层次的语义表达能够提升输入数据的区分能力,并且削弱不相关因素的影响[47]。目前,国内外学者开展了基于深度学习算法的SAR图像分类及识别等研究,经典的深度网络结构如深度置信网络[48]、卷积神经网络[49]和堆叠自动编码器[47]都应用于SAR图像分类识别问题中。何楚等[50]提出一种基于软概率的池化方法,结合多层反卷积网络,学习目标的高层结构特征,并将其用于SAR图像分类。陈渤等[51]提出一种相似性约束的受限玻尔兹曼机模型,提高了SAR图像目标识别的精度。Jiao等[52]提出Wishart深度堆叠网络进行极化SAR图像分类,将Wishart距离用于隐含层映射中,加快了计算速度并提高了分类精度。Gong等[53]采用受限玻尔兹曼机对多时相SAR图像训练学习,实现变化检测。Qin等[54]提出基于受限玻尔兹曼机的集成分类模型,适合于样本有效条件下的分类。Jiao等[55]提出判别式深度置信网络,学习SAR图像高层次信息,取得优异的分类效果。本课题组也开展了基于深度学习神经网络的单极化SAR图像分类的研究,提出了一种深度卷积编码网络[56]进行SAR图像特征提取并分类,所提模型具有特征自主学习的能力并能抑制相干斑噪声干扰,取得了优异的分类结果;提出了一种基于监督收缩编码器的深度网络[57],对SAR图像初始特征进行优化,通过加入对编码函数惩罚的收缩项来增强局部不变性,通过加入样本标签的监督项来引入高层语义信息,进一步提高了SAR图像分类精度。同时,本课题组提出了一种深度协同稀疏编码网络进行养殖浮筏目标识别[58],将超像素分割后的SAR图像像素点对应的特征输入到所提模型进行联合优化,使得同个超像素块的像素特征更趋于相似并平滑掉相干斑噪声,取得了较好的养殖浮筏识别效果。

针对上述讨论和提高识别率的考虑,结合对深度学习网络的讨论,提出利用深度学习作为核心的有监督浮筏养殖信息提取算法。该算法将超像素分割后的SAR图像像素点对应的特征输入到所提及模型进行联合优化,使得同个超像素模块的像素特征更趋于相似并平滑掉相干斑噪声,根据SAR遥感影像的自身特点,通过训练样本进行学习,实现不同类型目标的分类,结果如图15图17所示。

R17080-15.jpg图 15 数据切片3处理结果Fig.15 Result of data slice 3 experiment
R17080-16.jpg图 16 数据切片4处理结果Fig.16 Result of data slice 4 experiment
R17080-17.jpg图 17 数据切片5处理结果Fig.17 Result of data slice 5 experiment

为了对比分析非监督算法和有监督算法的优缺点,采用8 m空间分辨率全极化模式和5 m空间分辨率超精细条带模式GF-3 SAR数据进行整图处理,分别如图18图19所示。无监督算法仅根据数据特性进行识别,不需要人工选取学习样本,对于图18图19,可以实现分钟级识别效率,而对于深度学习网络需要小时数量级处理,但是识别精度受海况影响较大,如HH极化右下区域,浮筏养殖目标信息和海水背景混杂,识别精度会受到影响。而有监督深度学习方法对不同养殖分布状态、都具有更好的识别效果。针对GF-3长序列数据,可以提供不同海况下浮筏养殖目标的后向散射状态,增加深度学习网络训练样本的丰富性,从而对于海洋背景变化较大的情况下,均可以获得较好监测精度。

R17080-18.jpg图 18 极化浮筏养殖识别结果(全极化模式Ⅰ)Fig.18 Floating raft recognition result under full polarmetric mode Ⅰ
R17080-19.jpg图 19 UFS浮筏养殖识别结果(超精细条带模式)Fig.19 Identification result of UFS floating raft

6 结论和展望

随着SAR卫星的不断发射,覆盖频率大幅提高,GF-3 号SAR数据将在国家海域使用动态监测中发挥重大作用。本文对国家海域使用遥感动态监测和高分三号监测模式进行论述,重点对海岸线围填海变化监测、海水浮筏养殖极化散射机理、非监督/有监督信息提取算法进行了详细讨论,不同类型信息提取算法可根据实际需求发挥各自优势,从部分研究结果可以发现GF-3不同模式数据均可以实现海域使用信息的有效提取。

综合当前国内外技术发展和应用水平,可以开展GF-3号 SAR遥感影像在围填海用地类型分类方面的应用,包括养殖区、盐地、岸滩等。进而开展GF-3号全极化SAR数据分析研究,利用不同极化特征对围填海不同用地类型进行识别分类,实现GF-3号多时相围填海变化监测,自动提取围填海信息。

此外,针对GF-3号可以提供长序列监测数据的优势,可以有效获取不同海况下海上目标的后向散射特征,使得对于需要海量多样的学习样本进行训练的复杂分类器,例如深度学习网络、迁移学习等,得到有效的学习,充分提升网络泛化能力,实现不同海域不同海况海上目标的精确监测,具有广泛的科学应用价值。

参考文献

[1]潘德炉, 林明森, 毛志华. 海洋微波遥感与应用[M]. 北京: 海洋出版社, 2014. 
Pan De-lu, Lin Ming-sen, and Mao Zhi-hua. Application on Ocean Microwave Remote Sensing[M]. Beijing: China Ocean Press, 2014. (locate.gif1)
[2]何宜军, 孟雷, 李海艳, 等. 全极化合成孔径雷达海浪遥感方法[J]. 遥感技术与应用, 2007, 22(2): 177-182.
He Yi-jun, Meng Lei, Li Hai-yan, et al.. Ocean wave measured by fully polarimetric synthetic aperture radar[J].Remote Sensing Technology and Application, 2007, 22(2): 177-182. DOI:10.11873/j.issn.1004-0323.2007.2.177 (locate.gif1)
[3]韩富伟, 苗丰民, 赵建华, 等. 3S技术在海域使用动态监测中的应用[J]. 海洋环境科学, 2008, 27(S2): 85-89.
Han Fu-wei, Miao Feng-min, Zhao Jian-hua, et al.. Application of 3S technique in dynamic monitoring in sea usage[J]. Marine Environmental Science, 2008, 27(S2): 85-89. (locate.gif1)
[4]王厚军, 丁宁, 赵建华, 等. 海域动态监视监测业务分析研究[J]. 海洋开发与管理, 2017, 34(1): 39-41.
Wang Hou-jun, Ding Ning, Zhao Jian-hua, et al.. Operational analysis of dynamic surveillance monitoring of sea area[J]. Ocean Development and Management, 2017, 34(1): 39-41. (locate.gif1)
[5]吴良斌. SAR图像处理与目标识别[M]. 北京: 航空工业出版社, 2013. 
Wu Liang-bin. SAR Image Processing and Target Recognition[M]. Beijing: Aviation Industry Press, 2013. (locate.gif1)
[6]丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11-16.
Ding Chi-biao, Liu Jia-yin, Lei Bin, et al.. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11-16. DOI:10.12000/JR17024 (locate.gif1)
[7]杨虎, 郭华东, 王长林. TM-SAR数据融合在黄河口沙咀动态监测中的应用研究[J]. 地理学与国土研究, 2001, 17(4): 15-19.
Yang Hu, Guo Hua-dong and Wang Chang-lin. Coast line dynamic inspect and land cover classification at Yellow River Mouth using TM-SAR data fusion method[J]. Geography and Territorial Research, 2001, 17(4): 15-19. (locate.gif1)
[8]陆立明, 王润生, 李武皋. 基于合成孔径雷达回波数据的海岸线提取方法[J]. 软件学报, 2004, 15(4): 531-536.
Lu Li-ming, Wang Run-sheng and Li Wu-gao. A method of coastline extraction from synthetic aperture radar raw-data[J]. Journal of Software, 2004, 15(4): 531-536. (locate.gif1)
[9]林维诗. 基于主动轮廓模型和水平集方法的图像分割[D]. [硕士论文], 西安电子科技大学, 2010. 
Lin Wei-shi. Image segmentation based on active contour model and level set method[D]. [Master dissertation], Xidian University, 2010. (locate.gif1)
[10]赵伟舟. 基于模糊理论的SAR图像分割算法研究与实现[J]. 电脑知识与技术, 2008, 3(4): 768-769, 779.
Zhao Wei-zhou. Research and realization of an algorithm in SAR image segmentation based on fuzzy theory[J]. Computer Knowledge and Technology, 2008, 3(4): 768-769, 779. (locate.gif1)


推荐
热点排行
一周推荐
关闭