关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

微波光子雷达及关键技术(二)

2020.10.13

美国休斯飞机公司电光混合真延时模块示意
Fig. 2 Hybrid electronic and optical true time delay module of Hughes Aircraft

进入21世纪后,随着光纤通信的蓬勃发展,光子技术越来越成熟,光电转换效率不断提升,微波光子技术也得到了飞速发展。因而,美国DARPA将微波光子雷达研究第3阶段目标定为微波光子信号处理的实现,期望研制出芯片化的微波光子雷达射频前端,如图1(d)所示。为此美国DARPA设立了诸多项目[11],包括“高线性光子射频前端技术”(PHORFRONT),“光子型射频收发”(P-STAR),“适于射频收发的光子技术”(TROPHY),“超宽带多功能光子收发组件”(UL⁃TRA-T/R),“光任意波形产生”(OAWG),“可重构的微波光子信号处理器”(PHASER)、“大瞬时带宽AD变换中的光子带宽压缩技术”(PHOBIAC),“模拟光信号处理”(AOSP),“高精度光子微波谐振器”(APROPOS)等。目前不少项目及其衍生项目还在执行中。尽管美国DARPA对微波光子学的研究投入了大量人力财力,大大推动了微波光子学的发展,但其更加重视微波光子学基础技术的攻关,而在微波光子雷达系统上的报道较少。

1.2 欧盟微波光子雷达研究进展

不同于美国,欧盟更加关注微波光子雷达系统的研究。世界十大防务集团之一——意大利芬梅卡尼卡集团认为微波光子雷达系统的发展要分4步走,如图3所示。第1步,采用光子技术辅助射频功能的完成,主要包括利用光纤进行射频信号的远距离传输等;第2步,采用光子完成复杂的射频功能,包括高频高稳高纯微波信号的光学产生,利用光子技术进行微波信号的移相滤波变频采样等处理;第3步,光子技术取代部分电技术在雷达系统中发挥作用,主要涉及光控波束形成在部分雷达系统中的应用;第4步,采用光子技术构建雷达系统,亦即实现全光的雷达收发样机。

图3、欧盟微波光子雷达发展规划
Fig. 3 Development plan of microwave photonic radar of European Union

欧盟第1次在雷达系统中测试微波光子技术要追溯到1996年欧洲最大防务电子集团——泰勒斯(Thales)集团完成的光控相控阵样机[15],如图4(a)所示。不同于美国休斯飞机公司的光纤波束控制雷达系统,泰勒斯集团的光控相控阵系统采用了空间光延时模块对信号的延时进行控制。该系统工作于2.5~3.5 GHz,拥有16个阵元,可实现5 bit的延时控制和6 bit的相位控制。实验中完成了2.7~3.1 GHz范围内±20°的波束控制,无波束倾斜效应。此后泰勒斯集团还基于空间光延时实现了紧凑的真延时单元,并进行了外场测试,可实现6~18 GHz,扫描角度为±20°的无波束倾斜波束控制。该模块的照片和结果如图4(b)~(c)所示。

图4、泰勒斯集团的光控相控阵样机、真延时单元照片及外场测试结果

Fig. 4 Optically controlled phased array prototype of Thales, the photo of true time delay module, and the results of the field test

2013年,意大利国家光子网络实验室的Bogoni团队完成了1个结合微波光子多载波产生、发射和接收的光子雷达收发信机PHODIR(图5(a)),该工作于2014年3月在《Nature》

发表[16]。在发射端,具有超低抖动的锁模激光器产生1串光频梳输入到微波光子信号发生器中。在微波光子信号发生器中,光频梳信号被分成两路,分别经过2个光滤波器选出2根梳齿,其中1根梳齿调制上中频信号,另1根梳齿经过频移后与前1根梳齿合并拍频,实现雷达发射信号的产生。通过选择不同的梳齿可以产生400 MHz~40 GHz频率步进可调的雷达发射信号。在接收端,利用锁模激光器产生的光脉冲对接收到的雷达回波进行超快采样。采样后的信号经过光串并转换和时域拉伸进行降速,再进入低速电模数转换器中做进一步的量化和编码。该方案采用了锁模激光器为雷达发射机提供可重构波形,理论上可以产生上百GHz的微波信号,同时为接收机的光模数变换提供超低抖动的窄脉冲,避免了混频器的使用,提高了系统的稳定性和灵敏度,保证了收发相差。PHODIR雷达还进行了外场测试,得到了如图5(b)~(e)所示的结果。其中图5(b)为外场测试飞机的起飞轨道,图5(c)为A所在点的距离-速度图,图5(d)为距离和速度分辨率的放大图,图5(e)为未使用编码时的距离图,图5(f)为使用了13位巴克码编码的距离图。从实验结果可以看出,未使用编码前系统的距离分辨率为150 m,速度分辨率为2 km/h。编码后系统的距离分辨率提升至23 m。该系统的探测距离可达30 km。

图5、PHODIR 雷达及外场测试结果
Fig. 5 Schematic diagram and the field test result of PHODIR

2015年,Bogoni研究组[17]对系统进行了改进,将PHODIR雷达拓展至双波段。系统核心是1个双波段射频发射机和1个双波段射频接收机,如图6所示。在发射端,锁模激光器产生的宽谱信号分成3路,分别通过3个光滤波器选出不同载波的光梳齿,其中第1路被调制上中频波形信号,后与第2路和第3 路合并拍频,拍频可以得到2 个载有信息的射频信号。分两路由2个射频前端进行选频放大,而后经过天线发射出去。在接收端,天线接收到的雷达回波经过选频放大等操作被重新调制回锁模激光器的1个梳齿上,与另外2根梳齿合并混频,从而将射频信号下变频到中频。所得到的中频信号输入电模数转换器和数字信号处理模块中进一步处理。该研究小组还对PHODIR双波段雷达进行了外场测试,首先对比了PHODIR 和商用X波段SEAEAGLE 雷达成像结果,如图7所示。图7(a)为光子雷达探测到港口图片,图7(b)、(c)分别是SEAEAGLE雷达和双波段微波光子雷达X频段分系统的平面位置指示器图像,二者符合极好,证明该双波段雷达样机已达到了商用先进雷达的性能。随后又同时发射S和X波段波形对港口的一艘轮船进行成像和测速,并利用发射的S和X波段波形内在的相参性将两波形进行数据融合,省去了数据融合时复杂的相位校准算法,最终等效成带宽为两信号带宽之和的信号。图8(a)为目标的图像,图8(b)、(c)分别为S、X波段探测到的一维距离像,图8(d)是利用融合算法合成的一维距离像。此时的探测精度相当于两信号带宽之和对应的探测精度,使得图中显示出了更多的细节。该小组还对更多的非合作目标进行了合成孔径成像,如图8(e)~(j)所示。图8(e)为空中非合作目标波音737,图8(h)为海上非合作目标轮船。图8(f)和(g)分别为S波段和X波段对图8(e)的成像结果,图8(i)和(j)分别为S波段和X波段对图8(h)的成像结果。该系统的最大优点在于通过同一个发射机和接收机同时实现了双波段信号的发射与接收,大大降低了系统对硬件的要求。此外,该系统在发射机和接收机中使用了同一个锁模激光器,保证了收发的相干性,有利于通过光混频方法将信号频率降到中频处理。然而,要实现对发射信号频率的灵活选择,要么需要多组特定频率的雷达射频前端,要么需要性能较好的可调谐电滤波器,这仍然是该系统的挑战之一。


推荐
关闭