关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

无损检测的类型

2021.7.01

  从最简单的视觉和泄漏测试到先进的超声波或射线照相技术,许多不同类型的无损检测已经发展了数百年。每种要测试的不同材料都具有不同的特性,其中某些特性更有利于一种NDT。无损检测方法的测试手段,所需设备,速度和覆盖范围以及在某些情况下必要的安全预防措施会有所不同。

  没有一种全面的“最佳” NDT方法。在任何情况下,最好的方法都是最能满足使用它的组织需求的方法。在现代工业中,速度,易用性和应用范围通常是NDT解决方案中的首选质量。

  超声波检测(UT)

  超声波测试已被证明是现代无损检测中最有效的方法之一。该方法通过将高频声波引入固体物体(通常是金属或复合材料)中而起作用。声波的传播受到不规则因素的影响,例如密度变化,裂缝,空隙,蜂窝或异物。通过收集和解释返回的声波,超声波测试设备可以绘制许多固体物体的内部图。根据所使用的设备和应用程序的要求,可以收集反射回或穿过被扫描材料的波。

  超声波测试依靠换能器将电能转换为超声波。较旧的方法一次只使用一个换能器,而现代相控阵超声测试(PAUT)设备则使用多个串联运行的换能器。该技术大大提高了检查速度,覆盖范围和特异性。

  最近,先进的PAUT仪器增加了更高的性能,包括飞行时间衍射(TOFD)和总聚焦方法(TFM)。这些较新的技术非常适合处理更复杂的检查。

  由于具有多种优势,因此在整个行业的体积测试中普遍使用超声波设备。PAUT提供快速,准确的读数,几乎不需要任何设置。设备本身可以轻便,便于现场操作,但强度足以应付恶劣的环境。超声波覆盖物的测试应用范围使该技术对大型组织具有吸引力,因为它简化了公司设备的采购和培训方案。

  像所有NDT方法一样,超声波测试并非对每种应用都完美。铁等晶粒较粗的材料会干扰波的传播。如果没有定义的先进技术或完整解决方案,奇怪的几何形状(包括曲面)有时会造成覆盖困难。此外,探头质量会显着影响穿透深度和图像质量。

  涡流检测(ECT)

  涡流测试使用磁场形成导电材料的图像。材料属性的变化会在野外产生不连续性,类似于岩石在溪流中产生涡流的方式。这些变化提供了腐蚀,裂缝,空隙,蜂窝状,分层和厚度损失的迹象。

  涡流技术因其便携性,速度和准确性而在行业中得到了定期使用。涡流测试最关键的用途之一是发电行业。涡流技术已被证明对于检查热交换器和冷却器管是有效且经济的。手持式涡流设备允许就地检查,从而减少了执行检查所需的停机时间。

  涡流测试的最新创新是涡流阵列(ECA)技术,非常适用于航空航天,铁路,制造业,石油和天然气等众多行业的表面和近表面测绘。ECA是一种极其快速,经济高效且易于使用的技术,可提供高度准确的结果。

  尽管涡流技术可以穿透薄的非导电涂层,例如镀锌钢上的锌,但其使用仅限于导电材料。另外,涡流在复杂的几何形状或大面积的情况下可能会有困难。尽管这些限制了涡流设备的范围,但在其参数范围内,它仍然是一种高效的工具。

  目视检测(VT)

  最早的无损检测类型是视觉检测。它使用低功率设备(包括管道镜和纤维镜)来监视缺陷。快速,廉价,直接的视觉测试可以作为识别资产和基础设施问题(从裂缝到腐蚀)的初始工具。但是,当试图尽早识别出许多不同类型的材料故障以安全地维修或更换设备时,视觉测试是不够的。当视线被遮挡或缺陷很小或内部时,视力检查将失败。实际上,目视检查的各种缺点导致了其他形式的无损检测的必要性。

  远程超声波检测(LRUT)

  远程UT是专门用于管道的超声测试方法。超声波换能器或线圈内置在沿管道行进的环中。换能器发出波,从而提供管壁内部的图像。不规则性和厚度变化会改变波浪,向技术人员展示自己。此方法不需要换能器与表面之间的液体耦合剂。

  漏磁检测(MFL)

  磁通泄漏是一种有效的现场测试技术,主要用于检查大型管道,管道和罐底。强力磁铁用于使材料充满磁场。传感器检测由材料特性差异(例如腐蚀,点蚀,厚度损失或裂缝)引起的磁场波动。使用磁铁和沿着圆柱体长度方向移动的传感器,可以在不去除绝缘的情况下扫描管道。必须使用串联布置的场发生器对储罐底板进行扫描。该技术适用于黑色金属材料,并且是检测大型基础设施中缺陷的有效方法。

  激光检测(LM)

  三种类型的基于激光的NDT占主导地位-轮廓测定,剪切成像和全息测试。轮廓测定法使用旋转激光对管道的外表面成像,以检测裂缝,腐蚀或点蚀。

  剪切成像是一种检测材料缺陷的高精度“前后”方法。激光在施加应力之前和之后记录材料的图像,并使用检测到的差异推断内部结构。

  全息术使用类似的“前后”方法来推断微米级的缺陷。两种技术在用于生成结果的设备和软件上有所不同。对于较大的表面,首选剪切法。小型全息照相。

  射线检测(RT)

  射线照相测试已经通过X射线机进入了公众的想象。该方法利用辐射穿透物体和记录介质。记录介质上较暗的区域表示有更多的辐射线穿过物体的该区域,表示出现裂纹,空隙或密度变化。X射线通常用于较薄的材料。伽玛射线更浓。胶片或计算机传感器可用作记录介质。射线照相测试需要大量的设备和专业知识,以及用于防止过度暴露于辐射的安全预防措施。

  中子射线照相测试使用集中的中子射线而不是X射线或γ射线穿透物体。必须使用线性加速器或电子加速器来生成这些中子束。中子穿过金属,但不穿过大多数有机材料。当与标准射线照相结合使用时,这将提供物体内部的更详细的图像。此技术仅在实验室环境中使用。

  磁粉检测(MT)

  磁性粒子测试使用指示剂粒子的运动来证明铁磁材料内部的不连续性。被测试的零件必须涂有染色的磁性颗粒,呈干燥粉末或液体悬浮形式。磁铁将电磁场感应到要测试的材料中。磁场使磁性粒子向横向于磁场方向的任何不连续点移动,从而直观地显示出缺陷。

  磁粉测试是一门广泛的学科,可以使用多种方法来感应磁场。磁粉测试需要大量的设置和清理工作,因此无法在现场轻松使用。

  声发射(AET)

  声发射测试依赖于超声测试的类似原理,即声波通过固体物体的传输。然而,波的传播和测量是通过不同的方式完成的。通过对物体的急剧施加力(例如锤子的撞击或其他机械负载)来感应波。温度和压力的变化也会引起适当的波动。

  声发射测试不是侦听波特性的变化和这些特性的映射,而是检测介质本身的物理运动。物体材料的变化或不一致性(例如空隙)可以通过单独的传感器检测到的运动差异来检测。声发射测试虽然对塑料和其他材料有效,但与其他无损检测方法相比,它不那么普遍,而且设备密集。这项技术最常在实验室环境中找到。

  热/红外热成像检测(IRT)

  热测试使用从物体发出的捕获的红外辐射来提供物体表面的图像。热成像可以指示腐蚀,空隙,异物或分层。为了使红外热像仪具有直接的视线,必须遮盖要扫描的区域。虽然热测试可以有效,但它检测到的缺陷也可以通过其他方法进行修正,而这些方法所需的设置范围要小得多。

  振动分析(VA)

  振动分析擅长测试旋转零件的完整性,包括涡轮机,齿轮,轴和轴承。通常使用三种类型的振动分析:加速度计,速度传感器和涡流位移传感器。

  加速度计对高速敏感,因此对于高速应用最有效。速度传感器使用磁铁从旋转零件中产生电场,从而可以有效地测量以慢速或中等速度运动的零件。

  涡流位移传感器测量旋转零件在不需要的水平或垂直轴上的物理运动。他们可以检测到间隙或轴运动的变化,表明需要维修。

  渗透检测(PT)

  液体渗透剂测试可以直观地显示连接到材料表面的裂纹或其他缺陷。液体渗透剂主要用于无孔材料,因为多孔材料会掩盖缺陷的迹象。此测试方法将物料涂覆或浸泡在指示液中。该流体流入材料表面的开口中。当除去残留在表面上的液体时,液体从裂缝中返回。液体重现的任何地方都显示出缺陷;液体越多,缺陷越大。

  如果没有将瑕疵连接到表面的通道,液体将无法进入。因此,必须使用其他方法来检测封闭的空隙或蜂窝状结构。材料的表面也必须清洁,因为油和其他残留物不会干扰液体进入裂缝的能力。另外,液体渗透剂需要大量的设备,设置和清理来处理液体本身。尽管可以有效地使用此技术,但它通常比其他NDT方法更慢且更麻烦。

  泄漏检测(LT)

  泄漏测试是一种非破坏性测试,涉及确定密封容器中是否存在泄漏的几种方法。有四种检测气体泄漏的常用方法,尽管有些相似。压力变化测试会在密封的容器中加压或产生真空。失去压力或真空表明存在泄漏。气泡测试还依赖于压力指示器。将零件加压,然后浸入液体中。气泡的存在指示泄漏的位置。

  卤素二极管和质谱仪的测试相似,均使用识别气体检测泄漏的存在。将卤素或氦气(通常与空气混合)引入加压容器中。位于加压区域外部的卤素二极管检测器或质谱仪会提醒技术人员存在卤素或氦气,表明存在泄漏。

  可以使用专用设备在现场执行一些气泡测试,以在大和/或平坦的表面上创建密封区域。但是,气泡测试和其他泄漏测试方法非常耗时,并且需要繁琐的设备和设置。它们最好在实验室环境中进行。

推荐
热点排行
一周推荐
关闭