关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

五种小动物活体成像专用设备特点、应用及优缺点比较 一

2020.5.19

摘要:随着小动物成像技术的发展,活体小动物非侵袭性成像在临床前研究中发挥着越来越重要的作用。本文围绕五种小动物成像专用设备,综述其特点及主要应用,比较各种设备的优势和劣势,总结小动物活体成像设备的发展趋势。

动物模型是现代生物医学研究中重要的实验方法与手段,有助于更方便、更有效地认识人类疾病的发生、发展规律和研究防治措施,同时大鼠、天竺鼠、小鼠等小动物由于诸多优势在生命科学、医学研究及药物开发等多个领域应用日益增多。近年来各种影像技术在动物研究中发挥着越来越重要的作用,涌现出各种小动物成像的专业设备,为科学研究提供了强有力的工具。

动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。动物活体成像技术主要分为光学成像 (optical imaging)、核素成像(PET/SPECT)、核磁共振成像(magnetic resonance imaging ,MRI)、计算机断层摄影(computed tomography,CT)成像和超声(ultrasound)成像五大类。

活体成像技术是在不损伤动物的前提下对其进行长期纵向研究的技术之一。成像技术可以提供的数据有绝对定量和相对定量两种。在样本中位置而改变,这类技术提供的为绝对定量信息,如CT、MRI和PET提供的为绝对定量信息;图像数据信号为样本位置依赖性的,如可见光成像中的生物发光、荧光、多光子显微镜技术属于相对定量范畴,但可以通过严格设计实验来定量[1]。其中可见光成像和核素成像特别适合研究分子、代谢和生理学事件,称为功能成像;超声成像和CT则适合于解剖学成像,称为结构成像,MRI介于两者之间。

1. 可见光成像

体内可见光成像包括生物发光与荧光两种技术[2]。生物发光是用荧光素酶基因标记DNA,利用其产生的蛋白酶与相应底物发生生化反应产生生物体内的光信号;而荧光技术则采用荧光报告基因(GFP、RFP)或荧光染料(包括荧光量子点)等新型纳米标记材料进行标记,利用报告基因产生的生物发光、荧光蛋白质或染料产生的荧光就可以形成体内的生物光源。前者是动物体内的自发荧光,不需要激发光源,而后者则需要外界激发光源的激发[3]

1.1 生物发光:哺乳动物生物发光,一般是将萤火虫荧光素酶(Firefly luciferase)基因整合到需观察细胞的染色体DNA上,以表达荧光素酶,培养出能稳定表达荧光素酶的细胞株,当细胞分裂、转移、分化时,荧光素酶也会得到持续稳定的表达[4]。标记后的荧光素酶只有在活细胞内才会产生发光现象,并且发光强度与标记细胞的数目呈线性相关。

除萤火虫荧光素酶外,有时也会用到海肾荧光素酶(renilla Luciferase)[5]。二者的底物不一样,萤火虫荧光素酶的底物是荧光素(D-luciferin),海肾荧光素酶的底物是腔肠素(coelentarizine)。二者的发光波长不一样,前者所发的光波长在540~600nm,后者所发的光波长在460~540nm左右。前者所发的光更容易透过组织,在体内的代谢较后者慢,而且特异性好。所以,大部分活体实验使用萤火虫荧光素酶基因作为报告基因,如果需要双标记或特殊的实验,也可采用后者作为备选方案。

新问世的PpyRed红色漂移荧光素酶,把以前的荧光素酶的发光峰从562nm漂移到612 nm。随着发光波长的增加,PpyRed红色漂移荧光素酶穿透性大大提高,被皮肤吸收的比例显著降低,且光的漫射现象减少,提高了分辨率。总的说来,PpyRed红色漂移荧光素酶提高了活体生物发光成像的灵敏度和分辨率[6]

对于细菌标记,一般利用发光酶基因操纵子luxABCDE或luxCDABE,其由控制的编码荧光素酶的基因和编码荧光素酶底物合成酶的基因组成。利用这种办法进行标记的细菌会持续发光,不需要外源性底物。但是一般细菌标记需要转座子的帮助把外源基因插入到细菌染色体内稳定表达。通过荧光素酶基因标记的细菌进行的胃肠道排空的实验可以把活体成像的研究应用扩展到药物动力学、胃肠道功能学等领域[7]

1.2荧光:荧光成像技术发展迅速,主要表现在成像探针的不断更新;光学成像系统不仅提供定量信息,还能提供三维立体图像和多项复杂的数据;红外线断层扫描重建、光谱分离、图像融合和多通道成像技术已经在许多成像系统常规应用。

随着小动物成像技术的发展,成像探针种类越来越多,功能越来越强大[8]。量子点(quantum dots,QDs)荧光标记是纳米技术和体内荧光成像技术结合的一种新技术,除了能对活细胞实时长时间动态荧光观察与成像,对细胞间、细胞内及细胞器间的各种相互作用的原位实时动态示踪外,还可以标记在其他需要研究的物质上,如药物、特定的生物分子等,示踪其活动及作用,其在长时间生命活动监测及活体示踪方面具有独特的应用优势[9]


推荐
关闭