关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

土壤中低镁黏土矿物与铁氧化物富集轻镁同位素研究进展

2018.7.19

  镁是动植物必需的营养元素之一,参与动植物生长的多个生理过程,如蛋白和叶绿素的合成等。土壤是植物主要的“营养元素库”,镁通过根系吸收进入植物,再通过食物链进入动物体中。因此,了解镁在土壤体系中的生物地球化学行为,对农业生产及人体健康保护具有重要的科学意义。铁锰结核是区域性土壤中的常见矿物组分,由于其极大的比表面积,强烈影响金属元素在土壤中的迁移分布及生物有效性。中国科学院地球化学研究所刘承帅课题组通过Mg同位素地球化学手段对我国华南水稻土壤、铁锰结核、孔隙流体及植物体等Mg同位素组成进行了系统的研究,取得新的认识和进展:

  (1)铁锰结核与土壤具有完全不同的Mg同位素组成,这可能与Mg的来源有关:铁锰结核中的Mg主要来源于孔隙流体,而土壤中的Mg来源于原硅酸盐风化。

  (2)由于重Mg同位素优先进入矿物中,铁锰结核结构中的Mg相对于可交换及可溶性Mg具有较重的Mg同位素组成;但是,频繁的氧化还原反应会使铁锰结核富集轻Mg同位素。

  (3)因为低镁黏土矿物的Mg同位素组成主要受控于具有较轻同位素组成的可交换Mg,土壤具有很轻的Mg同位素组成;孔隙流体与次生矿物(如铁氧化物和黏土矿物)相互作用过程中,离子交换反应可以优先置换矿物中的重Mg同位素。

  该研究证实了铁氧化物和低镁黏土矿物可富集轻Mg同位素,提供了一种关于自然界中部分土壤具有较轻Mg同位素组成的新解释(如图)。研究也进一步证实,孔隙流体与次生矿物之间的离子交换也是土壤Mg同位素分馏的关键过程,这也是决定Mg由惰性态转变为可利用态的关键地球化学过程。成果发表在地球化学领域期刊Geochimica et Cosmochimica Acta(Gao, T., Ke, S., Wang, S., Li, F., Liu, C*., Lei, J., Liao, C., Wu, F. Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides. Geochim. Cosmochim. Acta, 2018, 237: 205-222)。第一作者为博士生高庭,通讯作者为研究员刘承帅。研究受到国家自然科学基金项目(41701266、U1612442、41420104007、41561092)、中科院前沿重点项目(QYZDB-SSW-DQC046)和中科院百人计划项目资助。

图:该研究及已发表文章土壤的Mg同位素组成汇编

推荐
热点排行
一周推荐
关闭