关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

晶体闪烁计数的探测原理

2022.7.07

  γ射线不同于α和β粒子,它类似于光和其它电磁辐射,在与物质作用时不直接产生电离,而是按下述三种机制之一被吸收:光电效应,康普顿效应和电子对效应。在光电效应中,每个光子将保持它的全部能量直到与吸收物质内原子的一个轨道电子相互作用为止。在此过程中,光子把全部能量给予电子,电子以高速度射出,光子就不再存在,发射出的电子称为光电子,光电子按β粒子同样的方式,将其能量电离,其它原子则消耗掉。在康普顿效应中,能量为hν的入射γ光子,与吸收物质内原子的一个轨道电子相互作用。在该过程中,光子把它的能量给予轨道电子,使电子射出,随后带有较小能量hv'的光子按能量和动量两者都守恒的形式被“散射”。射出的电子称为反冲电子,又叫康普顿电子。康普顿电子象光电效应中的情况一样,按与β粒子相同的方式消散它的能量,散射光子进一步通过光电或康普顿过程被吸收。电子对生成时,某些入射光子能量按照爱因斯坦方程转化为质量:E=mc&sup2 式中E为erg(尔格)表示的能量,m为以g表示的质量,c为光速,以cm/s为单位,入射的γ光子在吸收物质的一个原子的核场中以一种未知的方式湮灭,随后产生两个粒子,一个负电子和一个正电子,正电子只存在一个很短的时间,一旦它减慢,它就被吸收物质中的一个电子所中和,这一湮灭过程导致一对γ光子的产生,其每一个光子能量为0.511MeV,最终通过光电效应康普顿效应吸收。γ射线由于没有质量,具有很强的穿透性,而且最易被高电子密度的物质所吸收,如铅。具有高原子序数Z的原子直接与高电子密度有关。就探测器而言,某些无机盐能有效地吸收γ光子,发射出强度正比于所吸收γ射线能量的光子。例如,铊激活的碘化钠,由于碘原子的原子序数Z高,并且有较高的密度(比重3.67),而且每吸收单位能量的光子产额高,晶体的光透性也好,用来探测γ射线,效率较高。

推荐
热点排行
一周推荐
关闭