关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

硅微条探测器的工作原理

2021.10.29

  硅微条探测器是在一个n型硅片的表面上,通过氧化和离子注入法,局部扩散法,表面位垒法及光刻等技术工艺制作成的。其表面是均匀平行的附有一层铝膜的重搀杂p+微条。n型硅片的整个底面掺入杂质后,制成n型重搀杂n+层,其外层也附有一层铝,作为电极接触。这样制成了表面均匀条形的pn结型单边读出的探测器。

  中间部分的耗尽层是探测器的灵敏区,当在这些条型pn结加上负偏压时,耗尽层在外加电场的作用下,随着电压升高而变厚。当电压足够高,耗尽层几乎扩展到整个n-型硅片,基本达到了全耗尽,死层变得非常薄。因为其内部可移动的载流子密度很低,电阻率很高,漏电流非常小(好的硅微条探测器漏电流小于100pA)。外加电压几乎全部加到耗尽区上,形成很高的电场,。

  在无辐射电离时,基本没有信号产生。当有带电粒子穿过探测器的灵敏区时,将产生电子-空穴对,在高电场的作用下,电子向正极(底板)漂移,空穴向靠近径迹的加负偏压的微条漂移,在这很小的区域内(探测器厚度在300μm左右)收集电荷只需很短的时间(5ns左右)。在探测器的微条上很快就读出了这个空穴(实为电子)运动产生的电荷信号。读出电子学得到这个电荷信号,经过前置放大器将信号放大,再经过模拟通道,比较器,模数转换(ADC)后读入计算机。

  根据探测器系统测得的带电粒子的信息,及带电粒子在各个微条上的位置参量,可以确定各有关带电粒子的运动轨迹及对撞后末态粒子的次级顶点等。根据谱仪内的磁场强度和粒子运动的轨迹可以计算出每个带电粒子的动量。

  在设计、制作和使用硅微条探测器时需要考虑的一个重要原则问题是带电粒子在半导体探测器中的散射角度与探测器的厚度问题。因为半导体的密度比较大,带电粒子穿过探测器时,在探测器内部要经过多次散射。如果带电粒子的能量不高,探测器比较厚,粒子在探测器内经过很多次散射后,角度偏转比较大,这将不利于粒子的径迹和顶点精确测量。如果探测器太薄了,虽然散射次数减少,偏转角度小了,但探测效率降低了。因此,一定要根据被探测粒子的能量及实验对散射偏转角度的要求,恰当的选择探测器厚度。

推荐
关闭