关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

AFM纳米材料与粉体材料的分析

2018.7.31

 纳米材料与粉体材料的分析

在材料科学中,无论无机材料或有机材料,在研究中都有要研究文献,材料是晶态还是非晶态。分子或原子的存在状态中间化物及各种相的变化,以便找出结构与性质之间的规律。在这些研究中AFM 可以使研究者,从分子或原子水平直接观察晶体或非晶体的形貌、缺陷、空位能、聚集能及各种力的相互作用。这些对掌握结构与性能之间的关系有非常重要的作用。当今纳米材料是材料领域关注的课题,而AFM 对纳米材料微观的研究中,也是分析测视工具。纳米材料科学的发展和纳米制备技术的进步,将需要更新的测试技术和表征手段,以评价纳米粒子的粒径、形貌、分散和团聚状况。原子力显微镜的横向分辨率为0.10.2nm,纵向为0.01nm,能够有效的表征纳米材料。纳米科学和技术是在纳米尺度上( 0.1100nm)研究物质(包括原子、分子)的特性和相互作用,并且利用这些特性的一个新兴科学。其最终目标是直接以物质在纳米尺度上表现出来的特性,制造具有特定功能的产品,实现生产力方式的飞跃。纳米科学包括纳米电子学、纳米机械学、纳米材料学、纳米生物学、纳米光学、纳米化学等多个研究领域。纳米科学的不断成长和发展是与以扫描探针显微术(SPM)为代表的多种纳米尺度的研究手段的产生和发展密不可分的。可说,SPM 的相继问世对纳米科技的诞生与发展起了根本性的推动作用,而纳米科技的发展又为SPM 的应用提供了广阔的天地。SPM是一个包括扫描隧道显微术(STM)、原子力显微术(AFM)等在内的多种显微技术的大家族。SPM 不仅能够以纳米级甚至是原子级空间分辨率在真空、大气或液体中来观测物质表面原子或分子的几何分布和态密度分布,确定物体局域光、电、磁、热和机械特性,而且具有广泛的应用性,如刻划纳米级微细线条、甚至实现原子和分子的操纵。这一集观察、分析及操作原子分子等功能于一体的技术已成为纳米科学研究中的主要工具。


在粉体材料的研究中,粉体材料大量的存在于自然界和工业生产中,但目前对粉体
材料的检测方法比较少,制样也比较困难。AFM 提供了一种新的检测手段。它的制样简单,容易操作。以微波加热法合成的低水合硼酸锌粉体为例。我们可以将其在酒精溶液中用超声波进行分散,然后置于新鲜的云母片上进行测试。其原子力显微图如图3-3所示。粒径约为20nm 左右。


推荐
关闭