关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

一文读懂分子诊断常用技术

2018.12.20

  基于分子构象的分子诊断技术

  (一)变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)与单链构象多态性(single strand conformation polymorphism,SSCP)

  1970~1980年间,Fischer等[15]与Orita等[16]分别提出了利用核酸序列变异所导至双链变性条件差异与单链空间折叠差异,通过变性与非变性PAGE对变异序列进行分离鉴定的方法,即DGGE与SSCP。上述2项技术均通过变异核酸分子在空间构象上的差异,通过特定条件下电泳速率的变化进行检测。正因为核酸分子构象具有序列特异性,且对于序列的改变非常敏感,常常1个碱基的变化也能得到鉴定。但由于DGGE与SSCP均必须进行PCR后开盖电泳的操作,现已不常见于临床检测。

  (二)变性高效液相色谱(denaturing high-performance liquid chromatography,dHPLC)

  1997年,Oefner和Underhill建立[17,18]了利用异源双链变性分离变异序列、使用色谱洗脱鉴定的技术,称为dHPLC,可自动检测单碱基置换及小片段核苷酸的插入或缺失。对于存在一定比例变异序列的核酸双链混合物,其经过变性和复性过程后,体系内将出现2种双链:一种为同源双链,由野生正义链-野生反义链或变异正义链-变异反义链构成的核酸双链;另一种为异源双链,即双链中1条单链为野生型,而另1条为变异型。由于存在部分碱基错配的异源双链 DNA与同源双链DNA的解链特征不同,在相同的部分变性条件下,异源双链因存在错配区而更易变性,被色谱柱保留的时间短于同源双链,故先被洗脱下来,从而在色谱图中表现为双峰或多峰的洗脱曲线。由于该技术使用了较高分析灵敏度的色谱技术进行检测,可快速检出<5%负荷的变异序列。但需注意的是,由于该技术主要通过异源双链进行序列变异检测,其不能明显区分野生型与变异型的纯合子。

  (三)高分辨率熔解分析(high-resolution melting analysis,HRMA)

  2003年,Wittwer等[19]首次革命性地使用过饱和荧光染料将PCR产物全长进行荧光被动标记,再通过简单的产物熔解分析对单个碱基变化进行鉴定。该技术的原理也是通过异源双链进行序列变异鉴定。待测样本经PCR扩增后,若存在序列变异杂合子,则形成异源双链,其熔解温度大大下降。此时由于双链被饱和染料完全填充,其产物熔解温度的变化便可通过熔解曲线的差异得以判定。对于变异纯合子而言,HRMA也可利用其较高的分辨率完成PCR产物单个位点A:T双键配对与G:C三建配对热稳定性差异的鉴定,但是对于Ⅱ、Ⅲ类SNP的纯合子变异则无法有效区分。

  如何利用DNA构象对序列进行推测,从而避免成本较高的序列测定或操作繁琐的杂交反应一直是分子生物学研究与应用的热点问题。目前,使用构象变化对序列变异进行间接检测的便捷性已得到一致肯定,尤其是HRMA可完成对变异序列单次闭管的扩增检测反应。但需要注意的是,由于基于构象变化的分子检测手段多无法通过探针杂交或核酸序列测定对检测的特异性进行严格的保证,因此其只适合大规模的初筛,而真正的确诊仍需要进行杂交或测序的验证。

  定量PCR(quantitative PCR,qPCR)

  相比于其他分子诊断检测技术,qPCR具有2项优势,即核酸扩增和检测在同一个封闭体系中通过荧光信号进行,杜绝了PCR后开盖处理所带来扩增产物的污染;同时通过动态监测荧光信号,可对低拷贝模板进行定量。正是由于上述技术优势,qPCR已经成为目前临床基因扩增实验室接受程度最高的技术,在各类病毒、细菌等病原微生物的鉴定和基因定量检测、基因多态性分型、基因突变筛查、基因表达水平监控等多种临床实践中得到大量应用。但伴随着qPCR技术的迅猛发展,有关这项技术的质量管理问题也日益突出,如何消除各类生物学变量所引起的检测变异,减少或抑制实验操作与方法学中的各种干扰因素是qPCR技术面临的难题。

  (一)实时荧光定量PCR(real-time PCR)

  1.双链掺入法

  1992年Higuchi等[20-21]通过在PCR反应液中掺入溴乙锭对每个核酸扩增热循环后的荧光强度进行测定,提出了使用荧光强度与热循环数所绘制的核酸扩增曲线,定量反应体系中初始模板的反应动力学(real-time PCR)模型,开创了通过实时闭管检测荧光信号进行核酸定量的方法。核酸染料可以嵌入DNA双链,且只有嵌入双链时才释放荧光,在每1次的扩增循环后检测反应管的荧光强度,绘制荧光强度-热循环数的S形核酸扩增曲线,以荧光阈值与扩增曲线的交点在扩增循环数轴上的投影作为循环阈值(Cycle threshold,Ct),则Ct与反应体系中所含初始模板数量呈负指数关系,推断初始模板量。随后Morrison[22]提出了使用高灵敏度的双链染料SYBR Green I进行反应体系中低拷贝模板定量的方法。这一方法操作简便,但由于仅使用扩增引物的序列启动核酸扩增,其产物特异性无法得到充分保证。虽然在实时荧光定量PCR反应后可通过熔解曲线对产物特异性进行检验,但其特异性明显逊于使用荧光探针进行检测,因此双链掺入法并未在临床实践中得到认可。

  2.Taqman探针

  由于双链掺入法存在特异性较低的问题,1996年Heid[23]综合之前发现的Taq酶的5'核酸酶活性与荧光共振能量转移(fluorescence resonance energy transfer,FRET)探针的概念提出了使用Taqman探针进行qPCR的方法。TaqMan探针的本质是FRET寡核苷酸探针,在探针的5'端标记荧光报告基团,3'端标记荧光淬灭基团,利用Taq酶具有5'3'外切酶活性,在PCR过程中水解与靶序列结合的寡核苷酸探针,使荧光基团得以游离,释放荧光信号。从而使能够与靶序列杂交的探针在扩增过程中释放荧光,通过real-time PCR的原理对其进行定量。由于其超高的特异性与成功的商品化推广,Taqman探针已经成为目前临床使用最为广泛的qPCR方法,其在各种病毒基因定量检测、基因分型、肿瘤相关基因表达检测等方面具有着不可替代的地位。

  3.分子信标

  同样在1996年,Tyagi等[24] 提出了使用分子信标(moleuclar beacons)进行qPCR的方法,分子信标是5'与3'端分别标记有荧光报告基团与淬灭基团的寡核苷酸探针,其两端具有互补的高GC序列,在qPCR反应液中呈发夹结构,荧光基团与淬灭基团发生荧光共振能量转移(FRET)而保持静息状态。当PCR反应开始后,茎环结构在变性高温条件下打开,释放荧光;在退火过程中,靶序列特异性探针则与模板杂交保持线性,不能与模板杂交的探针则复性为茎环结构而荧光淬灭,通过检测qPCR体系中退火时的荧光信号强度,便可以real-time PCR原理特异性检测体系中的初始模板浓度。相比于Taqman探针,分子信标使用发卡结构使荧光基团与淬灭基团在空间上紧密结合,大大降低了检测的荧光背景,其检测特异性较Taqman探针更高,更适合等位基因的分型检测。

  4.双杂交探针

  1997年,Wittwer等[25]发表了使用分别标记荧光供体基团与荧光受体基团的2条相邻寡核苷酸探针进行qPCR的方法。双杂交探针所标记的供体基团和受体基团的激发光谱间具有一定重叠,且2条探针与靶核酸的杂交位置应相互邻近。仅当2条探针与靶基因同时杂交时,供体与受体基因得以接近,从而通过FRET发生能量传递,激发荧光信号,荧光信号强度与反应体系中靶序列DNA含量呈正比。由于使用了2条探针进行靶序列杂交,该方法的特异性比传统单探针检测体系得到了极大地提升。

  (二)数字PCR

  早在上世纪90年代就出现了使用微流控阵列对单次qPCR反应进行分散检测的概念。基于这一理念,Vgelstein与Kinzter[26]于1999年发表了数字PCR(digital PCR)的方法,对结肠癌患者粪便中的微量 K-RAS基因突变进行了定量。相比于传统的qPCR方法,数字PCR的核心是将qPCR反应进行微球乳糜液化,再将乳糜液分散至芯片的微反应孔中,保证每个反应孔中仅存在≤1个核酸模板。经过PCR后,对每个微反应孔的荧光信号进行检测,存在靶核酸模板的反应孔会释放荧光信号,没有靶模板的反应孔就没有荧光信号,以此推算出原始溶液中待测核酸的浓度。因此,数字PCR是1种检测反应终点荧光信号进行绝对定量的qPCR反应,而非以模板Ct值进行核酸定量的real-time PCR。

  经由Quantalife公司开发(已于2011年被BIO-RAD收购)的微滴式数字PCR是首款商品化的数字PCR检测系统,目前已被广泛运用于微量病原微生物基因检测、低负荷遗传序列鉴定、基因拷贝数变异与单细胞基因表达检测等多个临床前沿领域。与传统qPCR相比较,该技术具有超高的灵敏度与精密度,使其成为目前qPCR领域的新星。

  对未来5年的展望

  半个世纪以来分子诊断的高速发展离不开分子生物学技术日新月异的进步。概而言之,在过去的50年中分子诊断技术取得了三大转化与3项提升:即报告信号检测从放射核素标记向荧光标记转化,操作方法由手工操作向全自动化转化,检测分析通量从单一标志物向高通量多组学联合判断转化;检测灵敏度、精密度、特异性的快速提升。

  在未来5年中,我国分子诊断事业将迎来两方面的进步。随着卫生监管部门对分子诊断重要性的认识不断深入与越来越多高学历、高素质人才的进入,分子诊断将会出现理念的革命性进步,高通量技术将更多的进入临床的实际应用中。随着技术的进一步发展,传统针对特定基因异常、病原微生物感染鉴定的方法学,也将在检测的各项分析性能与操作便捷程度上取得长足的进步。对于传统人力与时间成本较高的检测方法学,将出现两极分化的态势,即Southern等经典的检测金标准将得到保留;而ASO-RDB等灵敏度、特异性均不能满足实际临床需求的方法将快速被新型技术所取代。最终,分子诊断也必将一改目前仅仅用于病原微生物基因检测与部分遗传性疾病诊断的局面,形成由肿瘤学、遗传学、微生物学、药物基因组学四足鼎立,快速发展的景象。


推荐
关闭