关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

原子轨道的历史相关介绍

2022.9.19

  现今普遍公认的原子结构是玻尔原子模型:电子像行星,绕着原子核(太阳)运行。然而,电子不能被视为形状固定的固体粒子,原子轨道也不像行星的椭圆形轨道。更精确的比喻应是,大范围且形状特殊的“大气”(电子),分布于极小的星球(原子核)四周。只有原子中存在唯一电子时,原子轨道才能精准符合“大气”的形状。当原子中有越来越多电子时,电子越倾向均匀分布在原子核四周的空间体积中,因此“电子云”越倾向分布在特定球形区域内(区域内电子出现机率较高)。

  早在1904年,日本物理学家长冈半太郎首度发表电子以类似环绕轨道的方式在原子内运转的想法。1913年,丹麦物理学家尼尔斯·玻尔提出理论,主张电子以固定的角动量环绕着体积极小的原子核运行。然而,一直到1926年、量子力学发展后,薛定谔方程才解释了原子中的电子波动,定下关于新概念“轨道”的函数。

  由于这个新概念不同于古典物理学中的轨道,1932年美国化学家罗伯特·马利肯提出以“轨函”(orbital)取代“轨道”(orbit)一词。原子轨道是单原子的波函数,使用时必须代入n(主量子数)、l(角量子数)、m(磁量子数)三个量子化参数,分别决定电子的能量、角动量和方位,三者统称为量子数。每个轨道都有一组不同的量子数,且最多可容纳两个电子。s轨道、p轨道、d轨道、f轨道则分别代表角量子数l=0, 1, 2, 3的轨道,表现出轨道形状及电子排布。它的名称源于对其原子光谱特征谱线外观的描述,分为锐系光谱(sharp)、主系光谱(principal)、漫系光谱(diffuse)、基系光谱(fundamental),其余则依字母序命名(跳过j)。

  在原子物理学的运算中,复杂的电子函数常被简化成较容易的原子轨道函数组合。虽然多电子原子的电子并不能以“一或二个电子之原子轨道”的理想图像解释,它的波函数仍可以分解成原子轨道函数组合,以原子轨道理论进行分析;就像在某种意义上,由多电子原子组成的电子云在一定程度上仍是以原子轨道“构成”,每个原子轨道内只含一或二个电子。

推荐
热点排行
一周推荐
关闭