关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

HINT-快速检测和评价冠状病毒药物的方法实例(三)

2021.2.22

开发基于图像分析的病毒蛋白结合抑制检测方法

RBD特异性抗体通过阻断S蛋白和DPP4的结合,从而主导了MERS-CoV的宿主免疫原性反应。抗体也可以作用于其他表位,包括NTD和S2区域。研究者们测定了结合MERS-CoV S不同区域的单克隆抗体抑制MERS-CoV S与DPP4表达细胞的结合能力。以下的流程图为该方法的实验步骤。
 

Celigo通过绿色(AL488)、红色(PE)和蓝色(DAPI)荧光通道对样本进行了全孔成像和分析荧光细胞图片显示D12抗体(RBD特异性)(图4A,B)和G2抗体(NTD特异性,数据未显示)均以剂量依赖性方式抑制MERS-CoV S蛋白结合,病毒S蛋白的荧光强度(绿色荧光)随着抗体浓度的降低而减弱。FlowJo分析结果表明这两种抗体具有相似的IC50值(~7.5 nM),和它们已知的与MERS-CoV S的结合常数具有可比性 [5]。此结果与先前证明这些单克隆抗体与MERS-CoV S1结合的BLI实验结果一致。作为阴性对照,G4抗体的结合区域为S2,在空间上与RBD-DPP4的相互作用较远,因此没有显示出任何抑制作用,如图4E所示。

用假病毒中和实验验证结合抑制结果

以往的研究显示,测试的三种单克隆抗体(G2,D12和G4)都可有效中和MERS-CoV假病毒感染天然表达DPP4的Huh 7.5细胞 [5]。为了验证抑制结果的可靠性,研究者们进行了MERS-CoV England 1假病毒中和实验,以确定抗体对表达DPP4的BHK21细胞的中和模式与结合抑制方式是否相似。正如所预期的,G2和D12具有相似的中和曲线(图5),IC50值在0.5–0.8 nM范围内。而G4的IC50(图5)比D12和G2高一个数量级,与结合抑制结果一致。以往的研究也在Huh 7.5细胞中显示出D12 / G2和G4之间存在相同数量级的差异 [5]。

结语

近年来,HINT已被多家机构和制药公司用于病毒的抗体中和能力检测,例如被美国CDC用于H3N2型甲流病毒 [10], MedImmune用于呼吸道合胞病毒 [11],中国食药监局用于H7N9型禽流感病毒等 [12]。HINT中的”Neutralization”(中和)不仅指抗体的中和作用,也可以广义地理解为非抗体类病毒药物/疫苗抑制病毒感染细胞的能力,因此在mRNA、DNA疫苗,佐剂,化学合成药物等的评估中也有很好的应用潜力。Celigo全视野细胞扫描分析仪具有分析整孔细胞的能力,在96孔板中扫描所有样品仅需10-15分钟,并且可以得到细胞数,细胞形态和荧光表达(包括未转染的细胞,细胞面积,平均荧光强度和总荧光强度)等结果。该方法可以快速地优化试验参数,例如细胞接种密度、细胞类型、蛋白选择和染色方法。另外,一块微孔板上可设置多个复孔和比较各种条件组合,能大大降低实验成本。Celigo高通量、高速度的特点以及强大的软件分析能力结合HINT技术可加速抗病毒药物和疫苗的开发,成为研究传染病的一种有价值的工具。

Nexcelom Bioscience对奋战在防疫一线的医护人员和科研人员工作者致以最高崇高的敬意!同时为贡献一份力量,我们将对所有研究新冠病毒的单位和人员提供力所能及的无偿服务与帮助。如有任何需要,请欢迎致电021-5886 0038。

愿我们能赢得这场与病毒的较量,挽救和保护更多的生命!Better tool for better biology for better life!

参考文献

1. Du L, et al., 2013. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J. Virol. 87, 9939-9942.

2. Raj VS, et al., 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251.

3. Corti D, et al., 2015. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc. Natl. Acad. Sci. 112, 10473-10478.

4. Johnson RF, et al., 2016. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012. Virology 490, 49-58.

5.  Wang L, et al.,2015. Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun. 6, 7712.

6. Pallesen J, et al., 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. 114, E7348-E7357.

7.  Yuan Y, et al., 2015. Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27. Sci. Rep. 5, 13133.

8. Chen Y, et al., 2017. A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein. Emrg. Microbes Infect. 6, e37.

9. Beigel JH, et al., 2018. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect. Dis. 18, 410-418.

10. Jorquera PA, et al., 2019. Insights into the antigenic advancement of influenza A (H3N2) viruses, 2011-2018. Sci Rep. 9, 2676.

11. Shambaugh C, et al., 2017. Development of a high-throughput respiratory syncytial virus fluorescent focus-based microneutralization assay. 24, e00225-17.

12. Tian Y, et al., 2018. Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus. Sci Rep. 8, 8484.


推荐
热点排行
一周推荐
关闭