关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

MOF调控Pd改善催化活性和选择性

2021.6.09

  催化与我们的生产生活息息相关,构筑高效催化剂是催化领域科学家们孜孜以求的目标。金属纳米催化剂是最为常见的多相催化中心。如何理性调控金属催化位点表面的理化性质,从而改善其与底物之间的相互作用是实现高效催化的关键之一。

  目前,大量工作已经证明小分子修饰金属催化剂是提升催化性能的有效手段。传统方法主要是在金属表面修饰小分子,然而修饰的小分子会覆盖金属活性位点,容易引起底物与金属位点接触受限而不利于催化活性。除此之外,将金属担载到传统载体表面(例如:氧化物),利用金属与载体之间的电子相互作用也是改善催化性能的手段之一。然而,传统氧化物载体自身结构可调节性有限,很难实现对金属催化中心表面性质的系统调控。因此,如何理性并系统调控金属催化位点的理化特性,从而优化催化剂的活性和选择性尚存在巨大挑战。

  近期,中国科技大学江海龙教授团队将高活性的金属纳米颗粒包覆在金属有机框架(MOF)中,构筑了金属@MOF复合催化剂,基于MOF结构高度的可调节性实现了对金属位点微环境的系统调控,进而实现了金属位点的催化效率和选择性的同步优化。

294023_202106091103571.jpg

  图1. 构筑Pd@MIL-101-Fx复合催化剂,存在显著优势

  中科大团队基于MIL-101-NH2中可修饰的氨基位点,通过后合成修饰的方法,将含氟小分子修饰到MOF框架中,策略性构筑了Pd@MIL-101-Fx(X= 3, 5, 7, 11, 15)纳米复合催化剂。疏水修饰后,MOF结构可保持,Pd的尺寸依然可以维持且依然被包覆在MOF孔道中。Pd被限域在MOF孔道内,可以确保疏水-CF2和-CF3基团与金属表面的充分接触,是实现对金属表面物化性质调节的关键。

  294023_202106091104151.jpg

  图2. 相对于表面活性剂保护的Pd颗粒,以及原型MOF包覆的Pd颗粒,修饰后获得的Pd@MIL-101-Fx(X= 3, 5, 7, 11, 15)不仅具有更高的催化活性,还可以同步优化反应选择性。

  在催化应用上,中科大团队以重要的工业反应对硝基氯苯的选择性加氢为研究对象,对催化剂进行了性能评估,结果表明疏水修饰后的Pd@MIL-101-Fx可以选择性的催化硝基官能团加氢而不发生脱氯,高效得到对氯苯胺产物,转化率>99%,选择性高达98%。为了进一步研究高性能的原因,作者结合实验表征以及DFT计算的结果发现,在修饰后的Pd@MIL-101-Fx中,Pd表面价态为正价态,会选择性吸附具有更高的电子密度(-0.238 e)的硝基官能团,进而实现了对硝基氯苯的选择性加氢。

294023_202106091104311.jpg

  图3. A,B)Pd@MIL-101-NH2和Pd@MIL-101-F3针对氯苯和苯胺的红外漫反射吸附结果;C)不同价态Pd催化产生对氯苯胺的反应路径能量变化

  这一成果近期发表在Chem 上,文章的第一作者是中国科学技术大学博士研究生李璐妍。


推荐
关闭