关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

电子产品无Pb制程的工艺可靠性问题分析(三)

2020.10.05

2.元器件影响元器件可靠性的因素如下。

(1)高温影响。某些元器件,如塑料封装的元器件、电解电容器等,受高的焊接温度的影响程度要超过其他因素。

(2)Sn晶须的影响。Sn晶须是长寿命的高端产品中精细间距元器件更加需要关注的另一个问题。无Pb钎料合金均属高Sn合金,长Sn晶须的概率比SnPb高得多。通过限制Sn层厚度来限制晶须的最终长度并不实际。人们普遍相信添加3wt%或更多Pb可防止晶须的形成,并且这种现象很少在SnPb焊点上发生。虽然偶尔观察到SnPb钎料中长出长达25~30μm的晶须,但可能是在大电流下电迁移效应导致的异常析出现象。

(3)应力的影响。SAC合金也会给元器件带来更大的应力,使低k介电系数的元器件更易失效。

(4)焊端表面镀层的影响。无Pb元器件焊端表面镀层的种类很多,有镀纯Sn和SAC的,也有镀SnCu、SnBi等合金的。镀Sn的成本比较低,因此采用镀Sn工艺比较多。但由于Sn表面容易氧化形成很薄的氧化层,加上电镀后易产生应力形成Sn晶须。Sn晶须在窄间距的器件QFP等容易造成短路,影响可靠性。故对于低端产品及寿命要求小于5年的元器件可以镀纯Sn。而对于高可靠产品及寿命要求大于5年的元器件,则应先镀一层厚度为1μm以上的Ni,然后再镀2~3μm厚的Sn。

(5)零部件的供应质量问题。由于各部件均来自于不同厂商,因而部件质量难免参差不齐,如器件引脚可焊性不足等。由于以前的热风整平(HASL)焊盘涂层工艺存在缺点,如今的OEM厂商应用较广泛的包括有机可焊性保护层(OSP)等涂层工艺。

3.PCB

(1)基材某些PCB(特别是大型复杂的厚PCB)根据层压材料的属性,可能会由于无Pb焊接温度较高而导致分层、层压破裂、Cu裂缝、CAF(导电阳极丝)等失效故障率上升。它还取决于PCB表面涂层,例如钎料与Ni层(ENIG涂层)之间的接合要比钎料与Cu(如OSP和浸银)之间的接合更易断裂,特别是在机械撞击下(如跌落测试中)尤为明显。

(2)焊盘涂层表面处理的最主要作用就是确保金属基底(通常是铜)的可焊性。由于以前的热风整平(HASL)焊盘涂层工艺存在缺点,可替代的表面涂层包括:有机可焊性保护膜(OSP)、Ni/Au、Ni/Pd/Au、Im-Sn和Im-Ag等。其中Ni/Au涂层又有ENIG Ni/Au和EG Ni/Au两种。无论选择哪种表面处理,它都必须维持精确的信号完整性,确保在任何情况下信号完整性都不会下降。选择正确的镀层还需要考虑的问题包括:电磁兼容(EMI)、接触电阻和焊点的强度。最后使用的表面处理要有利于控制电磁干扰。它还不能因为时间长而降低性能,否则在表面处理层/焊盘的连接部位会出现泄漏造成电磁干扰的问题。EG Ni/Au和ENIG Ni/Au都存在明显的可靠性问题,SnPb焊点在EG Ni/Au焊盘上的接合强度在使用几年后就可能大幅下降。由于无法对Au镀层的厚度实施有效且一致的控制,因此,建议在SnPb焊接中不采用Ni/Au的焊盘。

(3)PCB厚度的影响相同封装安装到不同厚度的PCB上的温度循环结果是:在使用的条件范围内,较薄的PCB拥有较长的温度循环寿命。事实上,厚PCB更难使得封装的热膨胀和收缩相一致,因此在焊点处导致了较大的热应力。4)焊盘定义对焊点可靠性的影响相同封装分别采用NSMD和SMD焊盘定义,如图4所示。以纯有Pb情况为例,将元器件连接到PCB上后,焊点的可靠性是不一样的。在循环温度范围为-40~125℃/10min的条件下,其寿命F(t)的威布尔分布如图5所示。

image.png

图4

电子产品无Pb制程的工艺可靠性问题

图5 NSMD/SMD焊点

在高低温温度循环试验中F(t)的威布尔分布图NSMD结构比SMD结构拥有较长的温度循环寿命。当采用NSMD结构时,焊接的连接力较大的原因是:焊盘的连接面积扩展到焊盘的侧面了。

(5)单面焊接和双面焊接存在的可靠性差异进行单面焊接和双面焊接转换安装(如表2所示)的结果,以及随后的温度循环特性比较,如图6、图7所示。即封装安装在底部面上时,就相当于被同样宽度大小的焊盘所替换,其温度循环特性几乎和单面焊接相同。表2 双面焊接验证

image.png

电子产品无Pb制程的工艺可靠性问题

图6 安装形式Ⅰ~Ⅳ在温度循环中的威布尔分布图(以有Pb为例)

电子产品无Pb制程的工艺可靠性问题

图7 单面和双面安装在温度循环试验中的威布尔分布(以有Pb为例)


推荐
热点排行
一周推荐
关闭